Ферменты генной инженерии

Автор работы: Пользователь скрыл имя, 25 Февраля 2015 в 17:07, реферат

Краткое описание

Осуществить рекомбинацию негомологичных молекул ДНК in vitro стало возможно лишь после открытия в конце 1960-х – начале 1970-х гг. ряда новых ферментов с уникальными свойствами, имеющих в качестве субстратов катализируемых ими реакций нуклеиновые кислоты, и в первую очередь ДНК.
Ферменты генетической инженерии – это ферменты, позволяющие проводить различные манипуляции с молекулами ДНК: разрезать в определенных местах, соединять различные по происхождению фрагменты, синтезировать новые, не существующие в природе последовательности, и т.д. Рассмотрим основные свойства ферментов, наиболее часто используемых в генно-инженерных работах.

Прикрепленные файлы: 1 файл

Ферменты генной инженерии.docx

— 21.78 Кб (Скачать документ)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

ТОМСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ИНСТИТУТ – ФИЛЛИАЛ

 

 

 

Агротехнологический факультет

Кафедра зоотехнии

Реферат на тему: Ферменты генной инженерии

 

 

 

 

 

 

 

Выполнил:

студент 2 курса

группы 731

Габрусонс С.А

 

Проверил:

Тулузакова С.Ю

 

 

 

 

 

Томск 2015

Введение

 

Осуществить рекомбинацию негомологичных молекул ДНК in vitro стало возможно лишь после открытия в конце 1960-х – начале 1970-х гг. ряда новых ферментов с уникальными свойствами, имеющих в качестве субстратов катализируемых ими реакций нуклеиновые кислоты, и в первую очередь ДНК.

Ферменты генетической инженерии – это ферменты, позволяющие проводить различные манипуляции с молекулами ДНК: разрезать в определенных местах, соединять различные по происхождению фрагменты, синтезировать новые, не существующие в природе последовательности, и т.д. Рассмотрим основные свойства ферментов, наиболее часто используемых в генно-инженерных работах.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Полимеразы

Впервые ДНК-полимераза была выделена Корнбергом с сотрудниками в 1958 году из E. coli.

ДНК-полимераза I E. coli (Pol I) не связывается с молекулами двухцепочечной кольцевой ДНК. Однако, если такие молекулы денатурировать и получить одноцепочечные формы, то с последними полимераза связывается в количествах, пропорциональных длине этих участков — примерно одна молекула на 300 нуклеотидных остатков. Pol l связывается с одноцепочечными участками двойной спирали ДНК, в местах одноцепочечных разрывов с З'-гидроксилом и 5'-фосфатом, а также с концами двухцепочечных молекул ДНК.

Фермент состоит из мономерной полипептидной цепи с молекулярной массой 103 кДа и имеет 3-х доменную структуру. Каждый домен обладает своей ферментативной активностью: 5’ - 3’ полимеразной, 3’ - 5’ экзонуклезной, 5’ - 3’ экзонуклеазной.

 

5'— 3' полимеразная активность. Для реакции необходимо наличие одноцепочечной ДНК-матрицы и комплементарного участку этой цепи фрагмента — праймера

3'- 5' экзонуклеазная активность. Гидролизует одноцепочечную или двухцепочечную ДНК с З'-ОН конца. 3'—5' нуклеаза расщепляет диэфирную связь только в неспаренных участках ДНК

5'— 3' экзонуклеазная активность. Деградирует одну цепь двухцепочечной ДНК, начиная со свободного 5'-конца.

 

Обратная транскриптаза

 

Обратная транскриптаза используется для транскрипции м-РНК в комплементарную цепь ДНК. При изучении ретровирусов, геном которых представлен молекулами одноцепочечной РНК, было обнаружено, что в процессе внутриклеточного развития ретровирус проходит стадию интеграции своего генома в виде двухцепочечной ДНК в хромосомы клетки-хозяина. В 1964 г. Темин выдвинул гипотезу о существовании вирусспецифичного фермента, способного синтезировать на РНК-матрице комплементарную ДНК. Усилия, направленные на выделение такого фермента, увенчались успехом, и в 1970 г. Темин с Мизутани, а также независимо от них Балтимор открыли искомый фермент в препарате внеклеточных вирионов вируса саркомы Рауса. Данная РНК-зависимая ДНК-полимераза получила название обратная транскриптаза, или ревертаза.

Обратная транскриптаза состоит из двух субъединиц — a (65 кДа) и b (95 кДа), присутствующих в эквимолярном количестве. Обратная транскриптаза обладает, по крайней мере, тремя ферментативными активностями:

1) ДНК-полимеразной, использующей в качестве матрицы как РНК, так и ДНК;

2) активностью РНКазы Н, гидролизующей РНК в составе гибрида РНК - ДНК, но не одно- или двухцепочечную РНК;

3) ДНК-эндонуклеазной активностью.

Первые две активности необходимы для синтеза вирусной ДНК, а эндонуклеаза, по-видимому, важна для интеграции вирусной ДНК в геном клетки-хозяина. Очищенная обратная транскриптаза синтезирует ДНК как на РНК-, так и на ДНК-матрицах. Чтобы начать синтез, ревертазе, как и другим полимеразам, необходим короткий двухцепочечный участок (праймер). Праймером может служить одноцепочечный сегмент как РНК, так и ДНК, которые в процессе реакции оказываются ковалентно связанными с новосинтезированной цепью ДНК.

 

Лигазы

 

В 1961 г. Мезельсон и Вейгл на примере фага l показали, что рекомбинация включает разрыв и последующее воссоединение молекул ДНК. Это положило начало поискам фермента, участвующего в сшивании фрагментов ДНК. В 1967 году такой фермент был найден и получил название ДНК-лигаза. Он катализирует синтез фосфодиэфирной связи в 2-х цепочечной молекуле нуклеиновой кислоты.

Иными словами, ДНК-лигазы сшивают рядом расположенные нуклеотиды, образуя связь между остатками сахаров. ДНК-лигазы абсолютно необходимы в процессах репарации ДНК, в процессах репликации - при удвоении цепи ДНК.

В генной инженерии используются  2 типа ДНК-лигаз, отличающихся по потребностям в кофакторах и способу действия. ДНК-лигаза E. coli в качестве кофактора использует дифосфопиридиннуклеотид, а лигаза фага Т4 - АТФ в присутствии Mg2+. Лигаза фага Т4 более универсальна, так как помимо лигирования липких концов способна катализировать

реакцию воссоединения двухцепочечных фрагментов ДНК с тупыми концами.

 

 

 

 

 

 

 

 

 

 

Терминальная трансфераза, поли-А - полимераза

 

Терминальная трансфераза (концевая дезоксинуклеотидилтрансфераза) была обнаружена Боллумом в 1962 году в тимусе теленка.

Субстратом терминальной трансферазы при использовании в качестве кофактора ионов Mg2+ является одноцепочечная ДНК с З'-ОН концом или двухцепочечная ДНК с выступающим одноцепочечным З'-ОН концом. Если в качестве кофактора используются Co2+, этот фермент может катализировать присоединение дезоксинуклеотидов к 3’-ОН концу двухцепочечной ДНК с тупыми концами.

При введении в реакцию, направляемую терминальной трансферазой, лишь одного типа дезоксинуклеотидов образуются молекулы ДНК, имеющие гомополимерные 1-цепочечные 3'-концы. Таким же образом можно достроить другим молекулам ДНК гомополимерные 3'-концы, комплементарные первым. Смешение полученных препаратов ДНК при определенных условиях может приводить к формированию гибридных молекул ДНК.

Именно с помощью концевой дезоксинуклеотидилтрансферазы в 1972 г. был выполнен первый эксперимент по рекомбинации молекул ДНК in vitro.

Поли (А) - полимераза E. coli была открыта Сиппелом в 1973 году. Она катализирует присоединение к 3’-ОН концу одноцепочечных молекул РНК поли (А) последовательностей. Применяется при подготовке молекул РНК к копированию с них комплементарной ДНК для введения радиоактивной метки в 3’-конец РНК.


Информация о работе Ферменты генной инженерии