Автор работы: Пользователь скрыл имя, 06 Января 2014 в 15:56, реферат
Благодаря привнесению новых генов организм (растение, микроорганизм, животное или даже человек) наделяется новой желательной характеристикой, которой до этого он никогда не обладал. Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет "избранному" растению быть невосприимчивым к смертельным для других дозам химикатов. В результате, поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные к гербициду, выживают. Чаще всего компания, продающая подобные растения, предлагает в наборе и соответствующий гербицид.
Введение
Генная инженерия впервые дала возможность преодолевать барьеры между живыми видами, например, помидор можно "скрестить" с рыбой, бактерию с картофелем, свинью с медузой и так далее.
Благодаря привнесению новых генов организм (растение, микроорганизм, животное или даже человек) наделяется новой желательной характеристикой, которой до этого он никогда не обладал. Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет "избранному" растению быть невосприимчивым к смертельным для других дозам химикатов. В результате, поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные к гербициду, выживают. Чаще всего компания, продающая подобные растения, предлагает в наборе и соответствующий гербицид.
Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина - земляной бактерии Bacillus thuringiensis. Таковым является ГМ картофель "Новый лист" (устойчивый к колорадскому жуку) биотехнологической компании "Монсанто", который должен был стать первым официально одобренным ГМО в Украине.
Устойчивость к вирусу растений
приобретает благодаря
1.История достижений генной инженерии
Первые трансгенные растения (растения табака со встроенными генами из микроорганизмов) были получены в 1983 г. Первые успешные полевые испытания трансгенных растений (устойчивые к вирусной инфекции растения табака) были проведены в США уже в 1986 г.
После прохождения всех необходимых тестов на токсичность, аллергенность, мутагенность и т.д. первые трансгенные продукты появились в продаже в США в 1994 г. Это были томаты Flavr Savr с замедленным созреванием, созданные фирмой "Calgen", а также гербицид-устойчивая соя компании "Monsanto". Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника.
В настоящее время получением и испытанием генетически модифицированных растений занимаются сотни коммерческих фирм во всем мире с совокупным капиталом более ста миллиардов долларов. В 1999 г. трансгенные растения были высажены на общей площади порядка 40 млн. га, что превышает размеры такой страны, как Великобритания. В США генетически модифицированные растения (GM Crops) составляют сейчас около 50% посевов кукурузы и сои и более 30-40% посевов хлопчатника. Это говорит о том, что генно-инженерная биотехнология растений уже стала важной отраслью производства продовольствия и других полезных продуктов, привлекающей значительные людские ресурсы и финансовые потоки. В ближайшие годы ожидается дальнейшее быстрое увеличение площадей, занятых трансгенными формами культурных растений.
Первая волна трансгенных
Нынешний этап развития генетической инженерии растений получил название "метаболическая инженерия". При этом ставится задача не столько улучшить те или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например, особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие "лекарственные" белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое. Использование трансгенных растений позволяет наладить масштабное и дешевое производство таких веществ и тем самым сделать их более доступными для широкого потребления.
1.1.Улучшение качества запасных белков
Запасные белки основных культурных видов кодируются семейством близкородственных генов. Накопление запасных белков семян – сложный биосинтетический процесс. Первая генноинженерная попытка улучшения свойства одного растения путем введения гена запасного белка от другого была, проведена Д. Кемпом и Т. Холлом в 1983 г. в США. Ген фазеолина бобов с помощью Ti-плазмиды был перенесен в геном подсолнечника. Результатом этого опыта было лишь химерное растение, получившее название санбин. В клетках подсолнечника были обнаружены иммунологически родственные фазеолиновые полипептиды, что подтверждало факт переноса гена между растениями, относящимися к различным семействам
Позднее ген фазеолина был передан клеткам табака: в растениях-регенерантах ген экспрессировался во всех тканях, хотя и в малых количествах. Неспецифическая экспрессия фазеолинового гена, так же как и в случае переноса его в клетки подсолнечника, сильно отличается от экспрессии этого гена в зрелых семядолях бобов где фазеолин составлял 25—50% от общего белка. Этот факт указывает на необходимость сохранения и других регуляторных сигналов этого гена при конструировании химерных растений и на важность контроля экспрессии генов в процессе онтогенеза растений.
Ген, кодирующий запасной белок кукурузы
– зеин, после интеграции его
в Т-ДНК был перенесен в геном
подсолнечника следующим
Более реальной задачей для генетической
инженерии считается улучшение
аминокислотного состава
Растения могут производить
и белки животного
В другом эксперименте удалось после
скрещивания трансгенных
Разработаны также подходы, позволяющие
получать бактериальные антигены в
растениях и использовать их в
качестве вакцин. Получен картофель,
экспрессирующий олигомеры
1.2.Жиры
Важнейшим сырьем для получения разного рода химических веществ являются жирные кислоты — основной компонент растительного масла. По своей структуре это углеродные цепи, которые обладают различными физико-химическими свойствами в зависимости от своей длины и степени насыщения углеродных связей. В 1995 году была закончена экспериментальная проверка и получено разрешение от федеральных властей США на выращивание и коммерческое использование трансгенных растений рапса с измененным составом растительного масла, включающего вместе с обычными 16- и 18-членными жирными кислотами также и до 45% 12-членной жирной кислоты - лаурата. Это вещество широко используется для производства стиральных порошков, шампуней, косметики.
Экспериментальная работа заключалась в том, что был клонирован ген специфической тиоэстеразы из растения Umbellularia califomica, где содержание лаурата в жире семян достигало 70%. Структурная часть гена этого фермента под контролем промотора-терминатора гена белка, специфического для ранней стадии семяобразования, была встроена в геном рапса и арабидопсиса, что и привело к увеличению содержания лаурата в масле этих растений.
Из других проектов, связанных с
изменением состава жирных кислот,
можно упомянуть работы, ставящие
целью повышение или снижение
содержания ненасыщенных жирных кислот
в растительном масле. Интересными
представляются эксперименты с петрозелиновой
кислотой — изомером олеиновой кислоты,
где двойная связь находится
за шестым углеродным членом. Эта жирная
кислота входит в состав масла
кориандра и определяет его более
высокую температуру плавления (33°С),
в то время как при наличии
олеиновой кислоты температура
плавления составляет только 12°С. Предполагается,
что после переноса генов, определяющих
синтез петрозелиновой кислоты, в растения
- продуценты растительного масла
удастся производить
1.3Полисахариды
Проводится работа по созданию трансгенных растений картофеля и других крахмалнакапливающих культур, в которых это вещество будет находиться в основном в виде амилопектина, то есть разветвленной форме крахмала, или же в основном только в виде амилозы, то есть линейных форм крахмала. Раствор амилопектина в воде более жидкий и прозрачный, чем у амилозы, которая при взаимодействии с водой образует ригидный гель. Так, например, крахмал, состоящий в основном из амилопектина, по-видимому, будет иметь спрос на рынке производителей различных питательных смесей, где сейчас в качестве наполнителя используется модифицированный крахмал. Генетической модификации могут подвергаться также геномы пластид и митохондрий. Такие системы позволяют значительно увеличить содержание продукта в трансгенном материале.
1.4.Создание гербицидоустойчивых растений
В новых, интенсивных
Изучение механизма
Существуют четыре принципиально различных механизма, которые могут обеспечивать устойчивость к тем или иным химическим соединениям, включая гербициды: транспортный, элиминирующий, регуляционный и контактный. Транспортный механизм устойчивости заключается в невозможности проникновения гербицида в клетку. При действии элиминирующего механизма устойчивости вещества, попавшие внутрь клетки, могут разрушаться с помощью индуцируемых клеточных факторов, чаще всего деградирующих ферментов, а также подвергаться тому или иному виду модификации, образуя неактивные безвредные для клетки продукты. При регуляционной резистентности белок или фермент клетки, инактивирующийся под действием гербицида, начинает усиленно синтезироваться, ликвидируя таким образом дефицит нужного метаболита в клетке. Контактный механизм устойчивости обеспечивается изменением структуры мишени (белок или фермент), взаимодействием с которым связано повреждающее действие гербицида
Информация о работе Достижения генной инженерии высших растений