Блистающий мир белков и пептидо

Автор работы: Пользователь скрыл имя, 19 Января 2014 в 18:04, курсовая работа

Краткое описание

Среди множества веществ, содержащихся в живом организме, особое место занимают белки. Их доля от сухой массы клеток млекопитающих составляет 60% – больше, чем для всех остальных вместе взятых химических соединений, и почти пятую часть от общей массы этих клеток. Каждый из сотен тысяч разных белков обладает уникальной химической и пространственной структурой, которые определяют его специфические функции.

Содержание

Философия
Химия
Понятие о пептидах и белках
Номенклатура пептидов
Элементарная математика и информатика
Физика
Основной принцип пептидного синтеза
Биология
Здоровье
Искусство
Спорт

Прикрепленные файлы: 1 файл

курсовая по биологии.docx

— 148.00 Кб (Скачать документ)

Таким образом, физические данные согласуются с теми, которые были нами получены из математических рассуждений, поскольку число 50 является величиной  того же порядка, что и 20, характеризующее  «аминокислотную систему счисления». Поэтому олигопептиды – вещества с числом аминокислотных остатков порядка 50, а у полипептидов (белков) это число много больше 50.

Итак, поскольку число  аминокислотных остатков у олигопептидов мало, а следовательно, и внутримолекулярных взаимодействий у них недостаточно для образования стабильной пространственной структуры, то их конфигурация постоянно изменяется в масштабах времени микромира (в нашем временном масштабе их можно сравнить с извивающимся червяком, выползшим на поверхность во время сильного дождя).

 

 

Одним из следствий таких  постоянных и быстрых изменений  является то, что из этих молекул  трудно (или невозможно) получить кристаллы  и вследствие этого исследовать  с помощью рентгеноструктурного анализа. Правда, существует еще один мощный метод (ядерный магнитный  резонанс, ЯМР), с помощью которого удается получить целые наборы конфигураций. Однако и в этом методе требуется  использование сильно концентрированных  растворов пептидов, в такой системе  уже может осуществляться межмолекулярное  взаимодействие одинаковых молекул  пептидов друг с другом, что влияет на получающийся результат и фиксирует  конфигурацию (конформацию) не только отдельной, но и взаимодействующей с другими пептидной молекулы.

Рис. 2. Возможные пространственные структруры мет-энкефалина с аминокислотной последовательностью YGGFM. Пунктиром отмечены водородные связи

На рис. 2 показаны 4 возможные  структуры природного пептидного опиоида энкефалина, состоящего из 5 аминокислотных остатков. Насколько они разные! Первая (развернутая) с большим трудом была получена с помощью рентгеноструктурного анализа. Три другие рассчитаны с применением специальных методов компьютерного моделирования, в результате чего получены структуры, содержащие от одной до трех внутримолекулярных водородных связей и очень сильно отличающиеся по конфигурации. Малость молекулы олигопептида позволяет ей в живом организме перемещаться на довольно большие расстояния, а высокая внутримолекулярная подвижность

 

 

принимать форму, необходимую  для успешного взаимодействия со многими веществами, в том числе  и с крупными белками (например, с  рецепторами).

 

  1.  Основной принцип пептидного синтеза

 

Образование пептидной связи  в случае дипептида является простым  химическим процессом. Дипептид формально  получается при отщеплении молекулы воды от амино- и карбоксильной групп двух аминокислот (рис. 4). Последовательное повторение этого процесса, казалось бы, должно привести к длинным пептидам и даже к белкам. Однако реализация этого принципа возможна только в жестких условиях неконтролируемой реакции. Основатель пептидной и

белковой химии Э. Фишер  в 1906 г. писал: «Если бы сегодня по счастливой случайности с помощью  какой-то жесткой реакции, например при сплавлении аминокислот в присутствии водоотнимающих средств, удалось получить настоящий белок и если бы, что еще менее вероятно, можно было искусственно созданный продукт идентифицировать с естественным, то это ничего не дало бы ни для химии белков, ни для биологии».

 

 

 

 

Рис.4 Основной принцип пептидного синтеза

 

Образование пептидной связи  в мягких условиях удается лишь при  активировании карбоксильного компонента одной из аминокислот, вступающей в  реакцию (рис. 5).

Вторая аминокислота В (аминокомпонент) атакует активированный карбоксильный компонент аминогруппой с образованием пептидной связи. Незащищенная аминофункция карбоксильного компонента А тоже может

реагировать, что приводит (рис. 5) к нежелательным побочным продуктам — линейным и циклическим  пептидам. Из этого следует вывод, что для однозначного течения  пептидного синтеза следует временно блокировать все функциональные группы, не участвующие в образовании  пептидной связи[3].

 

 

 

 

 

 

Рис.5 Схема образования  пептидной связи без защиты не участвующих в реакции функциональных групп

 

 

Пептидный синтез, т. е. образование  каждой пептидной связи, является поэтому многоступенчатым процессом. В первую очередь получают частично замещенные аминокислоты, при этом они одновременно теряют цвиттер-ионную структуру. Вторая ступень, собственно образование пептидной связи, протекает в две стадии. Сначала нужно активировать N-защищенный карбоксильный компонент. Затем происходит собственно образование пептидной связи, которое протекает либо одноступенчато (вместе с активированием), либо последовательно в следующую стадию. На третьей ступени защитные группы селективно отщепляются, причем полученные частично защищенные производные дипептидов могут использоваться для дальнейших синтезов как карбоксильные или аминокомпоненты. Само собой разумеется, что в случае синтеза дипептида обе защитные группы удаляются одновременно. Пептидный синтез, далее,

усложняется еще и тем, что из 20 протеиногенных аминокислот 9 обладают еще третьей функциональной группой, которая также требует селективной защиты. Это Ser, Thr, Туг, Asp, Glu, Lys, Arg, His и Cys. Следует различать временные и постоянные защитные группы. Временные защитные группы служат для защиты концевых амино- и карбоксильных групп и должны поэтому селективно отщепляться в присутствии постоянных защитных групп. Постоянные защитные группы удаляются обычно только после окончания синтеза пептида или же иногда на стадии промежуточного продукта. Активирование карбоксильного компонента и следующее за ним образование пептидной связи, т. е. так называемая реакция конденсации, в идеальных условиях должны протекать с высокой скоростью без рацемизации, без побочных реакций и с высоким выходом при соединении эквимолярных количеств карбокси- и аминокомпонентов. К сожалению, в настоящее время еще неизвестно такого метода конденсации, который

 

удовлетворял бы всем этим требованиям. Приходится выбирать из относительно большого набора методов подходящие варианты в соответствии со специфическими целями синтеза. Решение зависит  в каждом случае от выбранной тактики  синтеза, в соответствии с которой  для каждого отрезка синтезируемой  последовательности подбираются оптимальные  методы конденсации. Набор методов, которые применяются для практического  проведения синтеза пептидов, относительно мал по сравнению с примерно 130 описанными методами синтеза. На последней  ступени пептидного синтеза происходит отщепление защитных групп. Поскольку  синтез дипептида с полным удалением  защитных групп проводится довольно редко, гораздо большее значение имеет селективное деблокирование, т. е. выборочное отщепление защитных групп N-концевой аминофункции или же С-концевой карбоксильной группы. Этот вопрос находится в тесной связи с общим планом синтеза.

Под стратегией понимают последовательность связывания аминокислотных компонентов  в пептид, причем следует различать  постепенное наращивание и фрагментную  конденсацию. Получение полипептидов путем постепенного наращивания  цепи трудноосуществимо при больших  размерах целевой молекулы. В этих случаях большое значение приобретает  разделение объекта синтеза на отдельные  фрагменты с последующим соединением  их в полипептид. Оптимальный выбор  комбинации защитных групп и применение подходящего метода конденсации  для каждого отрезка составляет предмет тактики пептидного синтеза.

Стратегическую модификацию  постепенного наращивания пептидов или белков представляет разработанный  в 1963 г. Меррифилдом пептидный

синтез на полимерных носителях. Несмотря на сенсационный успех этого  метода (синтез протекает в двухфазной системе и есть возможиость его автоматизации), возлагаемые на него большие ожидания до сих пор полностью не исполнились.

 

  1. Биология

Многообразие структурных  форм белков и олигопептидов лежит в основе многообразия и их биологических функций. Это многообразие обусловливает то, что единой и строгой классификации веществ пептидной природы не существует, и пока есть сомнения в том, что такую классификацию в ближайшее время можно будет создать.

Функциональные свойства белков изучаются уже довольно давно, еще даже до тех времен, когда  научились определять их аминокислотную последовательность. Многие из этих свойств  широко известны, в том числе вошли  и в школьные учебники. Поэтому  нам кажется целесообразным более  подробно охарактеризовать биологические  свойства олигопептидов, которые

 

начали изучать сравнительно недавно. А в отношении белков отметим лишь одну, но принципиальную особенность.

Для олигопептидов  также не существует строгой структурно-функциональной классификации. К настоящему времени расшифровано более 4 тыс. разных аминокислотных последовательностей этих веществ, выделенных из животных, растений, грибов, бактерий и вирусов. Большинство из них по своим физиологическим функциям относят к регуляторным веществам, участвующим в регуляции всех основных регуляторных систем организма – нервной, эндокринной и иммунной. В соответствии с этим они и называются нейропептидами, олигопептидными гормонами и иммуномодуляторами. Кроме того, ряд олигопептидов рассматривается как медиаторы, прямо участвующие в синаптической передаче (нейропептиды), и модуляторы, осуществляющие регуляцию опосредованно (в том числе гормоны). Значительное число олигопептидов выполняет также защитные функции, представляя собой олигопептидные токсины.

Нетрудно заметить, что  часть функциональных свойств олигопептидов перекрывается с функциями белков (например, гормональные). Однако, как было уже отмечено выше, в силу разной подвижности целой молекулы и ее частей (конформационной подвижности) механизмы действия олигопептидных и белковых молекул разные.

Известны также примеры  совершенно удивительных явлений и  процессов, осуществляемых с участием природных олигопептидов. Приведем лишь некоторые из них.

Все знают об антибиотиках как об особом классе специфических  веществ, способных подавлять деятельность микроорганизмов (или грибов) и использующихся в качестве лекарственных средств. Раньше эти вещества рассматривались  как чужеродные человеку и большинству  животных. Однако за последние два  десятилетия выяснилось, что у  млекопитающих (в том числе и  в нейтрофилах крови человека), в коже амфибий (например, лягушек) в  гемолимфе многих насекомых, в яде ряда рептилий (например, змей) образуются собственные антибиотики олигопептидной природы, обладающие антибактериальной активностью. Таким образом, эти вещества могут рассматриваться как еще один компонент иммунной регуляции.

Также всем хорошо известен функциональный класс наркотических  веществ. Среди них – опий, представляющий собой высохший млечный сок из надрезов на незрелых коробочках опийного мака. В нем содержится около 20

 

различных алкалоидов, из которых  морфин является основным в наркотическом  действии на человеческий организм. А  в 1975 г. группой английских ученых было обнаружено, что в мозге быка (и  человека) присутствуют свои собственные  вещества (энкефалины), обладающие морфиноподобным действием. Более того, природные фрагменты белков молока и мяса (казеина и гемоглобина) также обладают этим свойством, в результате чего они получили названия казоморфинов и геморфинов. Интересно, какова их физиологическая роль? Всем известно, что грудные младенцы, питающиеся в основном молоком матери, большую часть своей начальной жизни проводят во сне. Не эти ли вещества являются причиной такого поведения?

Коснувшись проблемы сна, нельзя не отметить и обнаружение  олигопептида с весьма сложным названием – пептид, вызывающий дельта-сон. В этом названии, собственно, и описана функция, которая ему приписывается.

Какая только регуляция не осуществляется с участием природных олигопептидов! Например, в 1981 г. немецкие ученые Г.Шаллер и Г.Боденмюллер обнаружили, что у кишечнополостных (гидры и медузы) образуется специальный олигопептид, состоящий из 11 аминокислотных остатков и участвующий в морфогенезе. Потребовалось 10 лет для культивирования гидр, чтобы получить 3 кг необходимого материала для экстракции и выделить всего 0,5 мкг чистого олигопептида для определения аминокислотной последовательности. Однако эти гигантские усилия были вознаграждены. Впервые было показано, что полученный олигопептид способен вызывать стимуляцию роста головы животного. Но самое удивительное то, что через 3 года этими же учеными точно такой же олигопептид был обнаружен и в крови человека!

По-видимому, олигопептиды участвуют чуть ли не во всех физиологических процессах. В пищеварительной системе многих организмов сосуществуют олигопептиды противоположного действия – вызывающие чувство голода (гастрины) и сытости (холецистокинины). У насекомых при полете используются олигопептиды, участвующие в утилизации жировой ткани для выделения энергии, затрачиваемой на движение крыльев.

Многие животные продуцируют  олигопептидные феромоны, привлекающие особей противоположного пола. Наконец, многие олигопептиды участвуют во вкусовом восприятии. Одни из них на вкус горькие, а другие – сладкие. Есть и такие, сладость которых в тысячи раз больше, чем у обычного сахара.

 

 

А один из олигопептидов, выделенный из жареной говядины, получил название деликатесного за свой вкус.

Перечисление функциональных (биологических) свойств природных олигопептидов можно было бы продолжать довольно долго. Но в общем уже должно быть понятно, что олигопептиды в биологии существуют везде и их физиологическое действие практически безгранично.

 

  1. Здоровье

Очевидно, что набор белков и олигопептидов у здорового организма должен быть вполне определенным. Отклонения от нормы могут приводить к заболеваниям, порою тяжким.

Одним из таких заболеваний  является серповидноклеточная анемия, распространенная в ряде областей Африки, Индии, в некоторых средиземноморских странах и среди негритянского населения Северной Америки. У больных этой болезнью периодически (чаще под влиянием физической нагрузки) возникают приступы резкой слабости, тошноты и одышки. Внешняя причина – в необычно большом количестве незрелых эритроцитов и эритроцитов, имеющих форму тонкого серпа, что послужило основанием для такого названия этой болезни. Однако есть и более глубокое объяснение. Оказалось, что нормальные эритроциты содержат нормальный гемоглобин А, а серповидноклеточные – аномальный гемоглобин S. Выяснилось, что эти два белка отличаются всего одним аминокислотным остатком – в результате мутации в аномальном гемоглобине вместо остатка глутаминовой кислоты (E, табл. 1) на положенном месте стоит остаток валина (V). Замена лишь одного остатка и приводит к этому тяжкому заболеванию.

Информация о работе Блистающий мир белков и пептидо