Защитное заземление, зануление

Автор работы: Пользователь скрыл имя, 22 Января 2014 в 18:03, реферат

Краткое описание

Защитное заземление - это соединение корпусов электрооборудования, защитных оболочек электропроводки с проводником, имеющим электрический потенциал земли.
Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с "землей", а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередачи.
С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией.

Содержание

Введение. 3
Определения. 4
1. Общие положения. 5
2. Области применения защитного заземления и зануления. Допустимые величины сопротивления заземляющих устройств. 7
3. Защитная функция заземления. 9
4. Принцип действия защитного зануления 13
5. Электроустановки напряжением от 110 до 750 кВ. 18
6. Электроустановки напряжением выше 1000 В в сети с изолированной нейтралью. 19
7. Электроустановки напряжением до 1000 В в сети с заземленной нейтралью. 20
8. Электроустановки напряжением до 1000 В в сети с изолированной нейтралью. 21
9. Передвижные электроустановки и ручные электрические машины класса I в сетях напряжением до 1000 В. 21
10. Контроль устройств защитного заземления, зануления. 23
Список использованных источников. 24

Прикрепленные файлы: 1 файл

bgd_2014.doc

— 374.50 Кб (Скачать документ)

Содержание.

 

 

 

Введение.

 

Защитное  заземление - это соединение корпусов электрооборудования, защитных оболочек электропроводки с проводником, имеющим электрический потенциал земли.

Защитное  заземление состоит из заземлителя  и заземляющего контура. Заземлитель - это несколько труб диаметром 3 - 5 см или уголков 40 х 40 мм, длиной 2,5 - 3 м, забитых в землю. Верхние концы заземлителей соединяются стальной полосой сечением 40 х 4 мм2 и проходят по периметру помещения.

Упомянутые  выше корпуса электродвигателей, трансформаторов, ручных электроинструментов, каркасы щитов, пультов и шкафов, стальные трубы электропроводок подключаются к контуру заземления. Принцип действия защитного заземления основан на отводе тока через заземлитель при случайном соприкосновении человека с корпусом электродвигателя (и др. электроустановок), нормально не находящихся под напряжением, но могущий оказаться под ним в случае пробоя изоляции.

Защитное  зануление отличается от заземления тем, что корпуса машин и аппаратов  соединяются не с "землей", а  с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередачи.

Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 Ом.

С этой целью два раза в год (зимой  и летом) производится их контрольная проверка специальной лабораторией.

 

Определения.

 

Заземлитель – проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении  с землей или ее эквивалентом.

Естественный  заземлитель – заземлитель, в  качестве которого используют электропроводящие части строительных и производственных конструкций и коммуникаций.

Заземляющий проводник – проводник, соединяющий  заземляемые части с заземлителем.

Заземляющее устройство – совокупность конструктивно  объединенных заземляющих проводников и заземлителя.

Магистраль  заземления (зануления) – заземляющий (нулевой защитный) проводник с  двумя или более ответвлениями.

Заземленная нейтраль – нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление.

Изолированная нейтраль – нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через  большое сопротивление.

 

  1. Общие положения.

 

Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.

Защитное заземление следует выполнять преднамеренным электрическим соединением металлических частей электроустановок с "землей" или ее эквивалентом.

Зануление следует выполнять  электрическим соединением металлических  частей электроустановок с заземленной  точкой источника питания электроэнергией  при помощи нулевого защитного проводника.

Защитному заземлению или  занулению подлежат металлические  части электроустановок, доступные  для прикосновения человека и  не имеющие других видов защиты, обеспечивающих электробезопасность.

Защитное заземление или зануление электроустановок следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех случаях;
  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

В качестве заземляющих  устройств электроустановок в первую очередь должны быть использованы естественные заземлители.

При использовании железобетонных фундаментов промышленных зданий и  сооружений в качестве естественных заземлителей и обеспечении допустимых напряжений прикосновения не требуется сооружение искусственных заземлителей, прокладка выравнивающих полос снаружи зданий и выполнение магистральных проводников заземления внутри здания. Металлические и железобетонные конструкции при использовании их в качестве заземляющих устройств должны образовывать непрерывную электрическую цепь по металлу, а в железобетонных конструкциях должны предусматриваться закладные детали для присоединения электрического и технологического оборудования.

Допустимые напряжения прикосновения и сопротивления  заземляющих устройств должны быть обеспечены в любое время года.

Заземляющее устройство, используемое для заземления электроустановок одного или различных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок.

В качестве заземляющих  и нулевых защитных проводников  следует использовать специально предназначенные  для этой цели проводники, а также  металлические строительные, производственные и электромонтажные конструкции. В качестве нулевых защитных проводников в первую очередь должны использоваться нулевые рабочие проводники. Для переносных однофазных приемников электрической энергии, светильников при вводе в них открытых незащищенных проводов, приемников электрической энергии постоянного тока указанной нормы в качестве заземляющих и нулевых защитных проводников следует использовать только предназначенные для этой цели проводники.

Материал, конструкция  и размеры заземлителей, заземляющих и нулевых защитных проводников должны обеспечивать устойчивость к механическим, химическим и термическим воздействиям на весь период эксплуатации.

Для выравнивания потенциалов  металлические строительные и производственные конструкции должны быть присоединены к сети заземления или зануления. При этом естественные контакты в сочленениях являются достаточными.

 

  1. Области применения защитного заземления и зануления. Допустимые величины сопротивления заземляющих устройств.

 

Согласно ГОСТ 12.1.030-81 и ПУЭ защитное заземление и зануление требуется выполнять при напряжении 380 В и выше переменного тока и от 110 до 440 В постоянного тока при работах в условиях повышенной опасности и особо опасных (ГОСТ 12.1.013-78). Величины сопротивления защитного заземления установлены ПУЭ. Электроустановки от 110 до750 кВ должны иметь защитное заземление сопротивлением не более 0,5 Ома, а на территории, занятой оборудованием, должно быть выполнено выравнивание потенциалов.

В электрических установках выше 1000 В в сети с изолированной нейтралью сопротивление заземлителя должно быть: Rз = 250/Jз , где Jз - расчетная сила тока замыкания на землю, А. Если используется одновременно электрическая установка до 1000 В, то: Rз = 125/Jз

В электрических установках до 1000 В в сети с заземленной нейтралью, или заземленным выводом однофазного источника питания, а также с заземленной средней точкой в 3-х проводных сетях постоянного тока должно быть выполнено зануление.

При этом проводники должны быть выбраны таким образом, чтобы  при замыкании на корпус или нулевой проводник возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя. В цепях зануления не должно быть разъединителей и предохранителей.

Сопротивление заземляющих устройств, к которым присоединены нейтрали трансформаторов (генераторов) или выводы источника однофазного тока, должны быть не более 2, 4 и 8 Ом соответственно при 380 , 220 и 127 В источника однофазного тока.

В электрических установках до 1000 В в сети с изолированной нейтралью или с изолированными выводами однофазного источника защитное заземление должно быть в сочетании с контролем сопротивления изоляции.

Величина сопротивления  заземляющего устройства должна быть не более 10 Ом при мощности до 100 кВА и 4-х Ом соответственно более 100 кВА. Таким образом, защитное заземление применяется в сетях выше 1000 В с изолированной нейтралью или заземленной нейтралью, а в сетях до 1000 В - в сетях с изолированной нейтралью; зануление применяется в 4-х проводных сетях напряжением до 1000 В с заземленной нейтралью.

Основным назначением  защитного заземления и зануления  является обеспечение срабатывания максимально-токовой защиты при  замыкании на корпус или землю.

Необходимо иметь в  виду, что при двойном замыкании на землю (двух фаз в разных точках) эффективность защитного заземления снижается, так как напряжение заземленных корпусов относительно земли будет частью линейного - пропорционально сопротивлениям заземлителей. Зануление не обеспечивает безопасность, если человек не может самостоятельно освободиться от воздействия тока до момента полного отключения сети.

Кроме того, зануление  способствует выносу потенциала по нулевому проводнику на доступные к прикосновению  проводящие части неповрежденного  оборудования. Оно не защищает, если произойдет замыкание фазы на землю, минуя корпус, и переходное сопротивление в месте замыкания будет малым.

Опасно наличие зануления  при обрыве нулевого проводника, когда  все корпуса электроприемников  за точкой обрыва могут оказаться под напряжением.

 

  1. Защитная функция заземления.

Некоторые типы систем заземления электрических сетей.

 

Принцип защитного  действия

Защитное действие заземления основано на двух принципах:

  • Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.
  • Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе  с использованием устройств защитного  отключения. В этом случае при большинстве  нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО).

Работа заземления при неисправностях электрооборудования

Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции. В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:.

  • Корпус не заземлен, УЗО отсутствует (наиболее опасный вариант). Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.
  • Корпус заземлен, УЗО отсутствует. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземленном корпусе составит Umax=RG·IF, где RG − сопротивление заземлителя, IF − ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.
  • Корпус не заземлен, УЗО установлено. Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдет через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,01÷0,3 секунды — время срабатывания УЗО), как правило, не причиняющий вреда здоровью.
  • Корпус заземлен, УЗО установлено. Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземленный проводник ток течет с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,01÷0,3 секунды) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь — зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств.

Заземление будет эффективным лишь в том случае, если ток замыкания на землю IЗ практически не увеличивается с уменьшением сопротивления заземлителя. Такое условие выполняется в сетях с изолированной нейтралью (типа IT) напряжением до 1 кВ, так как в них ток замыкания на землю в основном определяется сопротивлением изоляции проводов относительно земли, которое значительно больше сопротивления заземлителя.

Схема сети с изолированной нейтралью (типа IT) и защитным заземлением электроустановки

Схема сети с заземленной нейтралью и защитным заземлением потребителя электроэнергии.

 

  1. Принцип действия защитного зануления

 

Зануление — основная мера защиты при косвенном прикосновении  в электроустановках до 1 кВ с  глухозаземленной нейтралью. Поскольку  нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Принцип работы зануления: при пробое фазной цепи электроприбора на зануленный корпус фактически происходит короткое замыкание «фаза-ноль». Сила тока в цепи при этом увеличивается  до очень больших величин, что вызывает быстрое срабатывание аппаратов защиты (автоматические выключатели, плавкие предохранители), которые быстро отключают линию, в которую включен неисправный прибор. Кроме того, если в этой линии установлено УЗО, то оно так же срабатывает, но не от большой величины силы тока, а потому, что сила тока в фазном проводе становится неравна силе тока в нулевом рабочем проводе, так как бо́льшая часть тока имеет место в цепи защитного зануления мимо УЗО. Если на этой линии установлены и УЗО и АВ, то сработают либо они оба, либо что-то одно, в зависимости от их быстродействия и величины тока замыкания. ПУЭ регламентируют время автоматического отключения поврежденной линии. Для сети 220/380В оно не должно превышать 0,4 с. Зануление осуществляется по определенным правилам, специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля.

Принципиальная схема  зануления в системе TN - S

1 – корпус электроустановки (электродвигатель, трансформатор и т. п.); 2 – аппараты защиты от токов КЗ (предохранители): R0 – сопротивление заземления нейтрали обмотки источника тока; RП – сопротивление повторного заземления нулевого защитного проводника; Iк – ток КЗ; Iн – часть тока КЗ, протекающего через нулевой защитный проводник; Iз – часть тока КЗ, протекающего через землю – корпус электроустановки (электродвигатель, трансформатор и т. п.); 2 – аппараты защиты от токов КЗ (предохранители): R0 – сопротивление заземления нейтрали обмотки источника тока; RП – сопротивление повторного заземления нулевого защитного проводника; Iк – ток КЗ; Iн – часть тока КЗ, протекающего через нулевой защитный проводник; Iз – часть тока КЗ, протекающего через землю – корпус электроустановки (электродвигатель, трансформатор и т. п.); 2 – аппараты защиты от токов КЗ (предохранители): R0 – сопротивление заземления нейтрали обмотки источника тока; RП – сопротивление повторного заземления нулевого защитного проводника; Iк – ток КЗ; Iн – часть тока КЗ, протекающего через нулевой защитный проводник; Iз – часть тока КЗ, протекающего через землю

Информация о работе Защитное заземление, зануление