Защита от статического и атмосферного электричества

Автор работы: Пользователь скрыл имя, 16 Сентября 2014 в 18:53, реферат

Краткое описание

Статическим электричеством называется совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрика или на изолированных проводниках.
Оно возникает в технологических процессах, сопровождающихся трением, измельчением, разбрызгиванием, распылением, фильтрованием и просеиванием веществ. При этом на самих материалах и на оборудовании образуется электрический потенциал в тысячи и десятки тысяч вольт. Приобретение телами избыточного заряда связано с явлением контактной электризации.

Содержание

Защита от статического электричества
Защита от атмосферного электричества
Список литературы

Прикрепленные файлы: 1 файл

Реферат по БЖД заказ.doc

— 74.50 Кб (Скачать документ)

СОДЕРЖАНИЕ

  1. Защита от статического электричества
  2. Защита от атмосферного электричества

Список  литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. ЗАЩИТА ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА  

Статическим электричеством называется совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрика или на изолированных проводниках.

Оно возникает в технологических процессах, сопровождающихся трением, измельчением, разбрызгиванием, распылением, фильтрованием и просеиванием веществ. При этом на самих материалах и на оборудовании образуется электрический потенциал в тысячи и десятки тысяч вольт. Приобретение телами избыточного заряда связано с явлением контактной электризации.

Кроме того, оно возникает при соприкосновении тел, различающихся по температуре, концентрации заряженных частиц, энергетическому состоянию атомов, шероховатости поверхности и другим параметрам. При этом происходит перераспределение между ними электрических зарядов.

Заряд в значительной степени зависит от электрической емкости материала, на котором он возникает, относительно земли. Наибольшей емкостью по отношению к земле обладают изолированные проводящие объекты и энергия искрового разряда с них на заземленную поверхность бывает достаточной для воспламенения большинства парогазовых и пылевоздушных смесей, а электрические разряды с диэлектрических поверхностей, вследствие отсутствия проводимости, обладают малой энергией.

Проводящими объектами могут быть металлические обрезиненные материалы, вращающиеся части технологического оборудования, люди, работающие с наэлектризованными материалами. Заряжение таких объектов может происходить двумя путями: непосредственный контакт с наэлектризованными материалами и индуктивное заряжение, а также при смешанном заряжении.

К контактному заряжению относится электризация при перекачивании углеводородных топлив, растворителей по трубопроводам. Изолированные от земли тела, попадая во внешнее электрическое поле, способны приобретать заряд за счет электрической индукции. Особенно опасна индуктивная электризация проводящих объектов, так как при разряде с них выделяется большое количество энергии.

Смешанное заряжение происходит при поступлении наэлектризованного материала в емкости, изолированные от земли, что наиболее распространено при заливке горючих жидкостей в резервуары, цистерны, бочки, при подаче тканей, пленок, резиновых клеев в передвижные емкости, тележки.

Основная опасность, создаваемая электризацией различных материалов состоит в возможности искрового разряда как с диэлектрической. наэлектризованной поверхности, так и с изолированного проводящего объекта. Разряд статического электричества возникает тогда, когда напряженность электрического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха эта величина составляет 30 кВ/м.

Воспламенение горючих смесей искровыми разрядами статического электричества произойдет если выделяющаяся в разряде энергия будет больше минимальной энергии зажигания горючей смеси.

Электростатическая искробезопасность объекта достигается при выполнении условии безопасности

Электростатическая искробезопасность объектов обеспечивается снижением электростатической искроопасности объекта (снижением Wр), а также снижением чувствительности объектов, окружающей и проникающей в них среды к зажигающему воздействию статического электричества (увеличением Wмин).

Снижение электростатической искроопасности объектов обеспечивается регламентированием Wр и применением средств защиты от статического электричества. Снижение чувствительности объектов, окружающей и проникающей в них среды к зажигающему воздействию разрядов статического электричества обеспечивается регламентированием параметров производственных процессов (влагосодержание и дисперсность аэровзвесей, давление и температура среды и др.), влияющих на Wр и флегматизацию горючих сред.

Для защиты от статического электричества используют два метода:

* метод, исключающий или уменьшающий  интенсивность генерации зарядов статического электричества;

*  метод, устраняющий заряды.

Метод, исключающий или уменьшающий образование зарядов наиболее эффективен и осуществляется следующими способами:

1.      Подбор пар материалов элементов машин, которые взаимодействуют между собой с трением.

По электроизоляционным свойствам вещества располагают в электростатические ряды в такой последовательности, при которой любое из них приобретает отрицательный заряд при соприкосновении с материалом, расположенным в ряду слева от него, и положительный − справа.

Например, один из таких рядов имеет следующий состав: этилцеллюлоза, казеин, эбонит, ацетилцеллюлоза, стекло, металлы, полистирол, полиэтилен, фторопласт, нитроцеллюлоза.

Чем дальше в ряду расположены материалы друг от друга, тем интенсивнее происходит образование зарядов статического электричества при трении между ними.

Поэтому, при создании машин материалы взаимодействующих между собой элементов машин выбирают одинаковыми или максимально близко расположенными в электростатическом ряду.

Например, пневмотранспорт полиэтиленового порошка желательно осуществлять по полиэтиленовым трубам.

2. Использование слабоэлектризующихся  или неэлектризующихся материалов.

3. Смешение материалов, которые  при взаимодействии с элементами  оборудования заряжаются разноименно. Например, при трении материала, состоящего из 40% нейлона и 60% дакрона, о хромированную поверхность электризации не наблюдается.

4. Снижение силы и скорости  трения, шероховатости взаимодействующих  поверхностей. С этой целью при транспортировании по трубопроводам огнеопасных жидкостей с большим удельным электрическим сопротивлением (например, бензина, керосина и т. п.) регламентируют предельные скорости перекачки.

Например:

* для жидкостей с удельным  электрическим сопротивлением (ρv) больше 109 Ом*м скорость должна составлять не более 1,2 м/с при диаметре трубопровода до 200 мм;

* при ρv<109 Ом*м допускается  скорость не более 5 м/с;

*  при ρv<105 Ом*м она ограничена величиной 10 м/с.

Налив таких жидкостей в резервуары свободно падающей на поверхность жидкости струей не допускается - сливной шланг заглубляют под поверхность жидкости.

5. Уменьшение силы трения и  площади контакта, шероховатости  взаимодействующих поверхностей, их  хромирование или никелирование  снижают величину электростатических зарядов. Этому способствует и создание воздушной подушки между движущимися материалами и элементами оборудования, Например, между пленкой и поверхностью валков.

6. Очистка потоков жидкостей  или газов от посторонних примесей, что способствует возникновению электризации.

Метод устранения зарядов реализуется следующими способами.

1. Основным приемом для устранения  зарядов является заземление  электропроводных частей технологического  оборудования для отвода в  землю образующихся зарядов статического электричества.

Для этой цели можно использовать обычное защитное заземление, предназначенное для защиты от поражения электрическим током. Если же заземление используется только для отвода зарядов статического электричества, его электрическое сопротивление не должно превышать 100 Ом.

2. При заземлении неметаллических  элементов машин и оборудования  на их поверхность наносят  электропроводные покрытия.

3. Агрегаты, входящие в состав  технологических линий, должны иметь  между собой надежную электрическую  связь, а линию в пределах цеха необходимо присоединить к заземлителю не менее чем в двух местах.

4. Для обеспечения непрерывного  отвода зарядов статического  электричества в землю полы  во взрывоопасных помещениях  выполняют из бетона, пенобетона, ксилолита, электропроводной резины, антистатического линолеума.

5. Тканевые материалы (например, фильтров) подвергают специальной пропитке, увеличивающей их электрическую  проводимость.

6. Для увеличения интенсивности  стекания статических зарядов  с элементов машин воздух в помещении, где они установлены, увлажняют до значения выше 65 – 70%.

7. Повышение поверхностной электропроводности  полимеров, которые гидрофобны, достигается  обработкой их кислотами, например, серной или хлорсульфоновой. Также  применяют специальные поверхностно-активные вещества и создают на поверхности диэлектрика электропроводную пленку на основе углерода, металлов или их оксидов.

8. Эффективным способом снижения  электризации материалов и оборудования  на производстве является применение  нейтрализаторов статического электричества, создающих вблизи наэлектролизованных  поверхностей положительные и  отрицательные ионы.

Ионы, несущие заряд, противоположный заряду поверхности, притягиваются к ней, и нейтрализуют ее заряд. По принципу действия нейтрализаторы разделяют на следующие типы: коронного разряда (индукционные и высоковольтные), радиоизотопные и аэродинамические.

В качестве СИЗ от статического электричества применяют oбувь на кожаной подошве или подошве из электропроводной резины.

При выполнении работ сидя применяют антистатические халаты в сочетании с электропроводной подушкой стула или электропроводные браслеты, сoeдиненные с заземляющим устройством через сопротивление не более 105 Ом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. ЗАЩИТА ОТ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по классификации Правил устройства электроустановок (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305— 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б — не менее 95 %.

По I категории организуется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1 и В-П (см. гл. 20). Зона защиты для всех объектов (независимо от места расположения объекта на территории СССР и от интенсивности грозовой деятельности в месте расположения) применяется только типа А.

По II категории осуществляется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1а, В-16 и В-Па. Тип зоны защиты при расположении объектов в местностях со средней грозовой деятельностью 10 ч и более в год определяется по расчетному количеству N поражений объекта молнией в течение года:

при N<=1 достаточна зона защиты типа Б; при N> 1 должна обеспечиваться зона защиты типа А. Порядок расчета величины N показан в нижеприведенном примере. Для наружных технологических установок и открытых складов, относимых по ПУЭ к зонам класса В-1г, на всей территории СССР (без расчета N) принимается зона защиты типа Б.

По III категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-1, П-2 и П-2а. При расположении объектов в местностях со средней грозовой деятельностью 20 ч и более в год и при N> 2 должна обеспечиваться зона защиты типа А, в остальных случаях — типа Б. По III категории осуществляется также молниезащита общественных и жилых зданий ,башен, вышек, труб, предприятий, зданий и сооружений сельскохозяйственного назначения. Тип зоны защиты этих объектов определяется в соответствии с указаниями СН 305—77.

Объекты I и II категорий устройства молниезащиты должны быть защищены от всех четырех видов воздействия атмосферного электричества, а объекты III категории — от прямых ударов молнии и от заноса высоких потенциалов внутрь зданий и сооружений.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникации на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Информация о работе Защита от статического и атмосферного электричества