Виды ионизирующих излучений

Автор работы: Пользователь скрыл имя, 08 Декабря 2014 в 22:23, реферат

Краткое описание

В последние годы большое внимание уделяется изучению характера воздействия ионизирующих излучений на радиотехническую аппаратуру, приборы, элементы электроники и радиотехнические материалы. Сейчас особенное значение имеют разработки в области атомной энергетики. Как известно радиоэлектронная аппаратура является неотъемлемой частью разного рода устройств и приборов, эксплуатация которых производится в полях ядерного излучения. Объект в таком случае подвергается действию импульса проникающей радиации. Такого рода воздействие может явиться следствием, например, ядерного взрыва. Облучённый материал меняет свою структуру, степень ионизации, разогревается. Кроме того, облучение приводит к появлению наведённой радиоактивности и многим другим явлениям, нарушающим физические и химические процессы в технических устройствах.

Содержание

Введение -3
1. Виды ионизирующих излучений -4
2. Элементарные частицы -5
2.1. Нейтроны -7
2.2. Протоны -8
2.3. Альфа-частицы -8
2.4. Электроны и позитроны -9
3. Гамма-излучение -11
4. Источники ионизирующих излучений -15
5. Изменение свойств материалов и элементов радиоэлектронной аппаратуры под действием ионизирующих излучений -18
6. Дефекты в материалах при воздействии на них ионизирующим излучением -18
7. Практическое использование ионизирующих излучений -19
Заключение -20
Список литературы -20

Прикрепленные файлы: 1 файл

гаоу спо м1.docx

— 56.38 Кб (Скачать документ)

2.3.Альфа-частицы.

 α -частицы, пролетая через воздух и сталкиваясь с молекулами газов, выбивают из них электроны. Молекулы, потерявшие электроны, становятся заряженными положительно, выбитые же электроны тотчас присоединяются к другим молекулам, заряжая их отрицательно. Таким образом, в воздухе на пути α -частиц образуются положительно и отрицательно заряженные ионы газа. Способность α -частиц ионизировать воздух была использована английским физиком Вильсоном для того, чтобы сделать видимыми пути движения отдельных частиц и сфотографировать их.

Впоследствии аппарат для фотографирования частиц получил название камеры Вильсона. (Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие Вильсона камеры основано на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряженной частицы. В дальнейшем вытеснена другими трековыми детекторами.)

Исследуя пути движения частиц с помощью камеры, Резерфорд заметил, что в камере они параллельны (пути), а при пропускании пучка параллельных лучей через слой газа или тонкую металлическую пластинку, они выходят не параллельно, а несколько расходятся, т.е. происходит отклонение частиц от их первоначального пути. Некоторые частицы отклонялись очень сильно, некоторые вообще не проходили через тонкую пластинку.

Исходя из этих наблюдений, Резерфорд предложил свою схему строения атома: в центре атома находится положительное ядро, вокруг которого по разным орбиталям вращаются отрицательные электроны.

Центростремительные силы, возникающие при их вращении удерживают их на своих орбиталях и не дают им улететь. Эта модель атома легко объясняет явление отклонения α - частиц. Размеры ядра и электронов очень малы по сравнению с размерами всего атома, которые определяются орбитами наиболее удаленных от ядра электронов; поэтому большинство α -частиц пролетает через атомы без заметного отклонения. Только в тех случаях, когда α -частицы очень близко подходит к ядру, электрическое отталкивание вызывает резкое отклонение ее от первоначального пути. Таким образом, изучение рассеяние α -частиц положило начало ядерной теории атома.

2.4.Электроны и позитроны.

Представление о содержащихся в веществах электрических частицах было высказано в качестве гипотезы английским ученым Г. Джонстоном Стонеем. Стоней знал, что вещества можно разложить электрическим током, – например, воду можно разложить таким способом на водород и кислород. Ему было известно также о работах Майкла Фарадея, установившего, что для получения некоторого количества элемента из того или иного его соединения требуется определенное количество электричества. Обдумывая эти явления, Стоней в 1874г. пришел к выводу о том, что они указывают на существование электричества в виде дискретных единичных зарядов, причем эти единичные заряды связаны с атомами. В 1891г. Стоней предложил название электрон для постулированной им единицы электричества. Экспериментально электрон был открыт в 1897г Дж. Дж. Томсоном (1856-1940) в Кембриджском университете.

Электрон представляет собой частицу с отрицательным зарядом величиной–0,1602 10-18 Кл.

Масса электрона равна 0,9108 10-30кг, что составляет 1/1873 массы атома водорода.

Электрон имеет очень небольшие размеры. Радиус электрона точно не определен, но известно, что он значительно меньше 1·10-15м.

В 1925г. было установлено, что электрон вращается вокруг собственной оси и что он имеет магнитный момент.

Число электронов в электронейтральном атоме закономерно повышается при переходе элемента от Z к Z + 1. Эта закономерность подчиняется квантовой теории строения атома.

Максимальная устойчивость атома, как системы электрических частиц, отвечает минимуму его полной энергии. Потому электроны при заполнении энергетических уровней в электромагнитном поле ядра будут занимать (застраивать) в первую очередь наиболее низкий из них (К – уровень; n=1). В электронейтральном невозбужденном атоме электрон в этих условиях имеет наименьшую энергию (и, соответственно, наибольшую связь с ядром). Когда К – уровень будет заполнен (1s2 – состояние, характерное для атома гелия), электроны начнут застраивать уровень L (n = 2), затем M – уровень (n=3). При данном n электроны должны застраивать сначала s-, затем p-, d- и т. д. подуровни.

Однако, как показывает рис. 3, энергетические уровни в атоме элемента не имеют ясных грани. Более того, здесь наблюдается даже взаимное перекрывание энергий отдельных подуровней. Так, например, энергетическое состояние электронов в подуровнях 4s и 3d, а так же 5s и 4d очень близки между собой, а 4s1 и 4s2 – подуровни отвечают более низким значениям энергии, чем 3d. Поэтому электроны, застраивающие, M- и N- уровни, в первую очередь попадут на 4s – оболочку, которая относится к внешнему электронному слою N (n=4), и лишь по ее заполнении (т. е. после завершения построения оболочки 4s2) будут размещаться в 3d – оболочке, относящейся к предвнешнему слою M (n=3). Аналогичное наблюдается и в отношении электронов 5s- и 4d – оболочек. Еще более своеобразно идет заполнение электронами f – оболочек: они при наличии электронов на внешнем уровне n (при n, равном 6 или 7) застраивают уровень n=2, т. е. предпревнешний слой, - пополняют оболочку 4f (при n=6) или соответственно оболочку 5f (при n=7).

Обобщая, можно высказать следующие положения.

Уровни ns, (n-1)d и (n-2)f близки по энергии и лежат ниже уровня np.

С увеличением числа электронов в атоме (по мере повышения величины Z) d – электроны «запаздывают» в построении электронной оболочки атома на один уровень (застраивают предвнешний слой, т. е. уровень n-1), а f – электроны запаздывают на два уровня: достраивают второй снаружи (т. е. предвнешний) слой n – 2. Появляющиеся f – электроны часто как бы вклиниваются между (n-1)d1 и (n-1)d2¸10 – электронами.

Во всех указанных случаях n – номер внешнего уровня, на котором уже содержатся два электрона (ns2 – электроны), причем n одновременно и номер того периода по таблице Менделеева, который включает данный элемент.

Элементы, в атомах которых при наличии электронов во внешнем слое n (ns2 – электроны) идет достройка одного из подуровней (3d, 4d, 4f, 5d или 5f), находящихся на предвнешних слоях (n-1) или (n-2), называются переходными.

 

В показателе степени при s-, p-, d- и f – обозначениях в строке (а) указано возможное число электронов в данной оболочке. Например, в оболочке s может содержаться либо один, либо два электрона, но не больше; в оболочке f – от 1 до 14 электронов и т. д.

Известно, что минимальное значение коэффициента при обозначении d – электронов равно трем. Следовательно, d-электроны могут в атомное структуре появится не ранее четырем. В связи с этим указанные электроны могут появиться в атомах не ранее как в элементах шестого периода (т. е. при n-2=4; n=4+2=6). Это обстоятельство и отмечено во второй строке.

Позитрон является античастицей электрона. В отличие от электрона позитрон имеет положительный элементарный электрический заряд и считается недолговечной частицей. Обозначается позитрон символами е+ или β+ .

3.Гамма-излучение

Гамма-излучение – это коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны (λ<10 -8 см) и вследствие этого ярко выраженными корпускулярными свойствами, т.е. ведет себя подобно потоку частиц – гамма квантов, или фотонов, с энергией h ν (ν – частота излучения, h – Планка постоянная).

Гамма- излучение возникает при распадах радиоактивных ядер, элементарных частиц, при аннигиляции пар частицы-античастица, а также при прохождении быстрых заряженных частиц через вещество.

Гамма-излучение, сопровождающее распад радиоактивных ядер, испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или в основное. Энергия γ – кванта равна разности энергий Δε состояний, между которыми происходит переход.

 Основное состояние ядра  Е1

Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (~10-2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося π0 - мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма –излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.

В межзвёзном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого длинноволнового, электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.

Аналогичное явление может иметь место в земных условиях при столновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в γ-квант. Таким образом, можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

Гамма-излучение обладает большой проникающей способностью, т.е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образавание пар электрон-позитрон. При фотоэффекте происходит поглощение γ-кванта одним из электронов атома, причём энергия γ-кванта преобразуется ( за вычетом энергии связи электрона в атоме ) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии γ-квантов ( £100 кэв ) на тяжелых элементах ( Pb, U).

При комптон-эффекте происходит рассеяние γ-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте γ-квант не исчезает, а лишь изменяет энергию ( длинну волны ) и направление распрастранения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым ). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1см3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышвют энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 Мэв. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.

Если жнергия γ-кванта превышает 1,02 Мэв, становится возможным процесс образования электрон-позитроновых пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hν. Поэтому при hν ~10 Мэв основным процессом в любом веществе оказывается образование пар.

Энергия γ-лучей ( Мэв )

Обратный процесс аннигиляция электрон-позитронной пары является источником гамма-излучения.

Для характеристики ослабления гамма-излучения в веществе обычно пользуются коэффициентом поглощения, который показывает, на какой толщине Х поглотителя интенсивность I0 падающего пучка гамма-излучение ослабляется в е раз:

I=I0 e- μ0 x

Здесь μ0 – линейный коэффициент поглощения гамма-излучения. Иногда вводят массовый коэффициент поглощения, равный отношению μ0 к плотности поглотителя.

Экспоненциальный закон ослабления гамма-излучения справедлив для узкого направления пучка гамма-лучей, когда любой процесс, как поглощения, так и рассеяния, выводит гамма-излучение из состава первичного пучка. Однако при высоких энергиях процесс прохождения гамма-излучения через вещество значительно усложняется. Вторичные электроны и позитроны обладают большой энергией и поэтому могут, в свою очередь, создавать гамма-излучение благодаря процессам торможения и аннигиляциии. Таким образом в веществе возникает ряд чередующихся поколений вторичного гамма-излучения, электронов и позитронов, то есть происходит развитие каскадного ливня. Число вторичных частиц в таком ливне сначала возрастает с толщиной, достигая максимума. Однако затем процессы поглощения начинают преобладать над процессами размножения частиц и ливень затухает. Способность гамма-излучения развивать ливни зависит от соотношения между его энергией и так называемой критической энергией, после которой ливень в данном веществе практически теряет способность развиваться.

Для изменения энергии гамма-излучения в эксперементальной физике применяются гамма-спектрометры различных типов, основанные большей частью на измерении энергии вторичных электронов. Основные типы спектрометров гамма-излучения: магнитные, сцинтиляционные, полупроводниковые, кристал-дифракционные.

Изучение спектров ядерных гамма-излучений дает важную информацию о структуре ядер. Наблюдение эффектов, связанных с влиянием внешней среды на свойства ядерного гамма-излучения, используется для изучения свойств твёрдых тел.

Гамма-излучение находит применение в технике, например для обнаружения дефектов в металлических деталях – гамма-дефектоскопия. В радиационной химии гамма-излучение применяется для инициирования химических превращений, например процессов полимеризации. Гамма-излучение используется в пищевой промышленности для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители.

Действие на организм гамма-излучения подобно действию других видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния гамма-излучения зависит от энергии γ-квантов и пространственных особенностей облучения, например, внешнее или внутреннее. Относительная биологическая эффективность гамма-излучения составляет 0,7-0,9. В производственных условиях (хроническое воздействие в малых дозах) относительная биологическая эффективность гамма-излучения принята равной 1. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков ) и растений.

Информация о работе Виды ионизирующих излучений