Производственный шум и его влияние на организм человека

Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 09:45, реферат

Краткое описание

Целью данной работы является изучение зависимости здоровья человека от шума (как производственного, так и бытового).
Для достижения поставленной цели потребовалось решить следующие задачи: обобщить научную литературу по данной тематике, раскрыть понятие "шум", проанализировать источники и характеристику шума, обозначить способы защиты от шума.

Содержание

1.Введение…………………………………………………………………………3
2.Физическая характеристика шума, его частотная характеристика. Шумовая болезнь……………………………………………………………………………..4
2.1. Понятие шума………………………………………………………………...4
2.2. Предельно допустимые уровни шума………………………………………4
2.3. Шумовая болезнь – патогенез и клинические проявления………………..5
2.4. Нормирование шума…………………………………………………………8
3. Производственный шум. Его источники и характеристики…………………8
3.1. Характеристика и виды производственных шумов.……………………….8
3.2. Источники производственного шума……………………………………….9
3.3. Измерение шума. Шумомеры………………………………………………10
3.4. Способы защиты от шума на предприятиях………………………………11
4. Заключение…………………………………………………………………….13
5. Библиографический список…………………………………………………..14

Прикрепленные файлы: 1 файл

Производственный шум.doc

— 117.00 Кб (Скачать документ)

В неврологической картине воздействия  шума основными жалобами являются головная боль тупого характера, чувство тяжести и шума в голове, возникающие к концу рабочей смены или после работы, головокружение при перемене положения тела, повышенная раздражительность, быстрая утомляемость, снижение трудоспособности, внимания, повышенная потливость, особенно при волнениях, нарушение ритма сна (сонливость днем, тревожный сон в ночное время). При обследовании таких больных нередко обнаруживают снижение возбудимости вестибулярного аппарата, мышечную слабость, тремор век, мелкий тремор пальцев вытянутых рук, снижение сухожильных рефлексов, угнетение глоточного, небного и брюшных рефлексов. Отмечается легкое нарушение болевой чувствительности. Выявляются некоторые функциональные вегетативно-сосудистые и эндокринные расстройства: гипергидроз, стойкий красный дермографизм, похолодание кистей и стоп, угнетение и извращение глазосердечного рефлекса, повышение или угнетение ортоклиностатического рефлекса, усиление функциональной активности щитовидной железы. У лиц, работающих в условиях более интенсивного шума, наблюдается снижение кожно-сосудистой реактивности: угнетаются реакция дермографизма,  пиломоторный рефлекс, кожная реакция на гистамин.

Изменения сердечно-сосудистой системы  в начальных стадиях воздействия  шума носят функциональный характер. Больные жалуются на неприятные ощущения в области сердца в виде покалываний, сердцебиения, возникающие при нервно-эмоциональном напряжении. Отмечается выраженная неустойчивость пульса и артериального давления, особенно в период пребывания в условиях шума. К концу рабочей смены обычно замедляется пульс, повышается систолическое и снижается диастолическое давление, появляются функциональные шумы в сердце. На электрокардиограмме выявляются изменения, свидетельствующие об экстракардиальных нарушениях: синусовая брадикардия, брадиаритмия, тенденция к замедлению внутрижелудочковой или предсердно-желудочковой проводимости. Иногда наблюдается наклонность к спазму капилляров конечностей и сосудов глазного дна, а также к повышению периферического сопротивления. Функциональные сдвиги, возникающие в системе кровообращения под влиянием интенсивного шума, со временем могут привести к стойким изменениям сосудистого тонуса, способствующим развитию гипертонической болезни. Изменения нервной и сердечно-сосудистой систем у лиц, работающих в условиях шума, являются неспецифической реакцией организма на воздействие многих раздражителей, в том числе шума. Частота и выраженность их в значительной мере зависят от наличия других сопутствующих факторов. Например, при сочетании интенсивного шума с нервно-эмоциональным напряжением часто отмечается тенденция к сосудистой гипертензии. При сочетании шума с вибрацией нарушения периферического кровообращения более выражены, чем при воздействии только шума.

2.4 Нормирование шума

Шум оказывает негативное влияние на весь организм человека. Шумы средних уровней (менее 80 дБ) не вызывают потери слуха, но тем не менее оказывают утомляющее неблагоприятное влияние, которое складывается с аналогичными влияниями других вредных факторов и зависит от вида и характера трудовой нагрузки на организм.

Нормирование шума призвано предотвратить нарушение слуха и снижение работоспособности и производительности труда работающих.

Для разных видов шумов  применяются различные способы  нормирования. Для постоянных шумов  нормируются уровни звукового давления в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для ориентировочной оценки шумовой характеристики рабочих мест допускается за шумовую характеристику принимать уровень звука, измеряемый по временной характеристике шумомера "S - медленно". Нормируемыми параметрами прерывистого и импульсного шума в расчетных точках следует считать эквивалентные (по энергии) уровни звукового давления в октавных полосах частот со среднегеометрическими частотами 63, 125, 500, 1000, 2000, 4000 и 8000 Гц. Для непостоянных шумов нормируется так же эквивалентный уровень звука в дБ. Допустимые уровни звукового давления для рабочих мест служебных помещений и для жилых и общественных зданий и их территорий различны. Нормативным документом, регламентирующим уровни шума для различных категорий помещений является ГОСТ 12.1.003-83 "ССБТ. Шум. Общие требования безопасности". Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в дБ в октавных полосах частот, уровни звука и эквивалентные уровни звука в дБА для жилых и общественных зданий и их территорий следует принимать в соответствии со СНиП 11-12-88 "Защита от шума".

3. Производственный шум. Его источники и характеристики

3.1. Производственный шум – совоокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работающих неприятные субъективные ощущения.

Производственный шум  характеризуется спектром, который  состоит из звуковых волн разных частот. При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных  величин, распределенными по октавным полосам частот.

Полоса частот, верхняя  граница которой превышает нижнюю в два раза, т.е. f= 2 f, называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для  которых f= 21/3 f= 1,26 f.

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой. Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (fсг мин = 31,5 Гц, fсг макс = 8000 Гц).

По частотной характеристике различают шумы: низкочастотные ( fсг < 250); cреднечастотные (250 < fсг ≤ 500); высокочастотные (500 < fсг ≤ 8000).

Производственные шумы имеют различные спектральные и  временные характеристики, которые  определяют степень их воздействия  на человека.

3.2. Источники производственного шума

По природе возникновения  шумы машин или агрегатов делятся  на:

  • механические;
  • аэродинамические и гидродинамические;
  • электромагнитные.

На ряде производств  преобладает механический шум, основными  источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе метало- и деревообрабатывающих станков.

Аэродинамические и  гидродинамические шумы – это 1) шумы, обусловленные периодическим  выбросом газа в атмосферу, работой  винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания; 2) шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов; 3) кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

При работе различных  механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.

Любой источник шума характеризуется, прежде всего, звуковой мощностью. Звуковая мощность источника – это общее  количество звуковой энергии, излучаемой источником шума в окружающее пространство.

Поскольку источники  производственного шума, как правило, излучают звуки различной частоты и интенсивности, то полную шумовую характеристику источника дает шумовой спектр – распределение звуковой мощности (или уровня звуковой мощности) по октавным полосам частот.

Источники шума часто  излучают звуковую энергию неравномерно по направлениям. Эта неравномерность излучения характеризуется коэффициентом Ф(j) - фактором направленности.

Фактор направленности Ф(j) показывает отношение интенсивности звука I(j), создаваемого источником в направлении с угловой координатой j к интенсивности Iср, которую развил бы в этой же точке ненаправленный источник, имеющий ту же звуковую мощность и излучающий звук во все стороны равномерно:

Ф(j) = I(j) /Iср = p2(j)/p2ср ,

где рср - звуковое давление (усредненное по всем направлениям на постоянном расстоянии от источника); p (j) - звуковое давление в угловом направлении j, измеренное на том же расстоянии от источника.

3.3. Измерение шума. Шумомеры

Все методы измерения  шумов делятся на стандартные и нестандартные. Стандартные измерения регламентируются соответствующими стандартами и обеспечиваются стандартизованными средствами измерения. Величины, подлежащие измерению, так же стандартизованы. Нестандартные методы применяются при научных исследованиях и при решении специальных задач.

Измерительные стенды, установки, приборы и звукоизмерительные камеры подлежат метрологической аттестации в соответствующих службах с  выдачей аттестационных документов, в которых указываются основные метрологические параметры, предельные значения измеряемых величин и погрешности измерения.

Стандартными величинами, подлежащими измерению, для постоянных шумов являются: уровень звукового  давления в октавных или третьоктавных  полосах частот в контрольных точках; уровень звука в контрольных точках.

Шумоизмерительные приборы – шумомеры – состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) – быстро, S (slow) – медленно, I (pik) – импульс. Шкалу F применяют при измерениях постоянных шумов, S – колеблющихся и прерывистых, I – импульсных.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 – для лабораторных и натурных измерений; 2 – для технических  измерений; 3 – для ориентировочных  измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.

Приборы для измерения  шума строятся на основе частотных  анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в  определенной полосе частот. В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.

Частотная характеристика фильтра К (f) =Uвых /Uвх представляет собой зависимость коэффициента передачи сигнала со входа фильтра Uвх на его выход Uвых от частоты сигнала f.

Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов.

3.4. Способы защиты от шума на предприятиях

Согласно ГОСТ 12.1.003-83 при разработке технологических  процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочих мест следует принимать все необходимые меры по снижению шума, воздействующего на человека, до значений, не превышающих допустимые.

Защита от шума должна обеспечиваться разработкой шумобезопасной техники, применением средств и методов коллективной защиты, в том числе строительно-акустических, применением средств индивидуальной защиты.

В первую очередь следует  использовать средства коллективной защиты. По отношению к источнику возбуждения шума коллективные средства защиты подразделяются на средства, снижающие шум в источнике его возникновения, и средства, снижающие шум на пути его распространения от источника до защищаемого объекта.

Снижение шума в источнике  осуществляется за счет улучшения конструкции машины или изменения технологического процесса. Средства, снижающие шум в источнике его возникновения в зависимости от характера шумообразования подразделяются на средства, снижающие шум механического происхождения, аэродинамического и гидродинамического происхождения, электромагнитного происхождения.

Методы и средства коллективной защиты в зависимости  от способа реализации подразделяются на строительно-акустические, архитектурно-планировочные  и организационно-технические и включают в себя:

Информация о работе Производственный шум и его влияние на организм человека