Автор работы: Пользователь скрыл имя, 07 Декабря 2012 в 14:17, реферат
В соответствии с ГОСТ 24346-80 (СТ СЭВ 1926-79) «Вибрация. Термины и определения» под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений по крайней мере одной координаты. Причиной возбуждения вибраций являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия.
По физической сущности шум представляет собой волнообразно распространяющееся колебательное движение частиц упругой (газовой, жидкой или твердой) среды. Источником его является любое колеблющееся тело, выведенное из устойчивого состояния внешней силой.
Слышимые звуки – 20 – 20 000 Гц.
Ультразвуковой диапазон – свыше 20 кГц.
Инфразвук – меньше 20 Гц.
Устойчиво слышимые звуки – 1000 Гц – 3000 Гц.
Как и для всякого волнообразного колебательного движения, основными параметрами, характеризующими звук, являются амплитуда колебания, скорость распространения и длина волны. Непосредственно примыкающие к источнику колебания 1 частицы среды вовлекаются в колебательный процесс и смещаются, приходя в состояние ритмичного сгущения разрежения. Этот процесс в силу упругости среды распространяется последовательно на
смежные частицы в виде волны, образуя звуковое поле. Амплитуда колебаний звучащего
тела пропорциональна амплитуде смещения частиц проводящего тела, т. е. звукового давления, которое представляет собой переменное давление, возникающее дополнительно к атмосферному, в той среде, через которую проходят звуковые волны. Оно выражается в Па или дин/см3. В фазе сжатия звуковое давление положительно, в фазе разрежения – отрицательно. От величины звукового давления зависит сила звука – шума. Одна из основных характеристик колебательного движения – изменение во времени. Время, в течение которого колеблющееся тело совершает одно полное колебание, называется периодом колебания (Т) и измеряется в секундах. Период колебания связан следующим соотношением с его частотой.
Частота колебаний – число полных колебаний, совершенных в течение одной секунды. Единица измерения частоты – герц (Гц) равна одному колебанию в секунду. Расстояние, на которое в течение одной секунды может распространиться волновой процесс, называется скоростью звука и обозначается «с». При температуре воздуха 20°С и нормальном атмосферном давлении скорость звука равна 334 м/с, при повышении температуры она увеличивается примерно на 0,71 м/с на каждый градус. Расстояние между двумя соседними сгущениями или разрежениями в звуковом поле характеризует длину волны (Я), которая измеряется в метрах и связана с частотой и скоростью звука соотношением. Распространение звуковых волн сопровождается переносом энергии в пространстве. Количество энергии, проходящее через единицу поверхности, расположенной перпендикулярно направлению распространения звуковой волны, в единицу времени, называется интенсивностью или силой звука и обозначается J (Вт/м2):
Величины звукового давления и интенсивности звука, с которыми приходится
иметь дело в практике борьбы с шумом, могут меняться в широких пределах: по давлению
до 108 раз, по интенсивности до 101В раз. Естественно, что оперировать такими цифрами
неудобно. Кроме того, способность слухового аппарата регистрировать огромный диапазон величин звуковых давлений объясняется тем, что различается не разность, а кратность изменения абсолютных величин (ступенчатость восприятия). Установлено, что каждая последующая ступень восприятия отличается от предыдущей на 12,4%. Поэтому для характеристики акустического феномена принята специальная измерительная система интенсивности и энергии шума, учитывающая приближенную логарифмическую зависимость между раздражением и слуховым восприятием, а именно шкала логарифмических единиц как наиболее объективная и соответствующая физиологической сущности восприятия. По этой шкале каждая последующая ступень звуковой энергии больше предыдущей в 10 раз. Например, если интенсивность звука увеличивается в 10, 100, 1000 раз, то по логарифмической шкале увеличение происходит соответственно на 1, 2, 3 единицы. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности звука, называется белом (Б).
Логарифмические единицы позволяют оценить интенсивность звука не абсолютной величиной звукового давления, а ее уровнем, т. е. отношением фактически создаваемого давления к давлению, принятому за единицу сравнения. Такой единицей принято считать минимальное давление, которое человек воспринимает как звук на частоте 1000 Гц, а именно 2 • 10'5 Па.
Весь диапазон энергии, воспринимаемой слухом как звук, укладывается при таких условиях в 13... 14 Б. Для удобства пользуются не белом, а единицей в 10 раз меньшей – децибелом (дБ), который соответствует минимальному приросту силы звука, различаемому ухом.
Таким образом, бел и децибел – это условные единицы, которые показывают, насколько данная интенсивность звука в логарифмическом масштабе больше интенсивности
звука, соответствующей условному порогу слышимости. Измеряемые таким образом величины называются уровнями интенсивности шума или уровнями звукового давления. Интенсивность звука определяется по логарифмической шкале громкости. В шкале
– 140 дБ. За нулевую точку шкалы принят "порог слышимости" (слабое звуковое ощущение, едва воспринимаемое ухом, равное примерно 20 дБ), а за крайнюю точку шкалы –
140 дБ – максимальный
предел громкости. Громкость
По официальной классификации шумов, принятой в нашей стране, шумы следует
подразделять по характеру спектра на широкополосные, с непрерывном спектром шири-
ной более одной октавы, и тональные, в спектре которых имеются слышимые дискретные
тона.. По временным характеристикам шумы следует подразделять на постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени незначительно, и непостоянные. Последние, в свою очередь, следует подразделять на колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени; прерывистые, уровень звука которых резко падает до уровня фонового шума, причем длительность интервалов, в течение которых уровень остается постоянным и превышающим уровень фонового шума, составляет 1 с и более; импульсные, состоящие из одного или нескольких звуковых сигналов – каждый длительностью менее 1 с.
Распространение звуковых волн сопровождается появлением ряда акустических
факторов, имеющих важное значение для характеристик шума, рассмотренных выше, гигиенической оценки шума и выбора мер защиты. Действие шума на организм человека.
К настоящему времени накоплены многочисленные данные, позволяющие судить о
характере и особенностях влияния шумового фактора на слуховую функцию. Течение
функциональных
изменений может иметь
Установлено, что утомляющее и повреждающее слух действие шума пропорционально его высоте (частоте). Наиболее выраженные и ранние изменения наблюдаются на
частоте 4000 Гц и близкой к ней области частот. При этом импульсный шум (при одинаковой эквивалентной мощности) действует более неблагоприятно, чем непрерывный.
Особенности его
воздействия существенно
Помимо действия шума на органы слуха, установлено его вредное влияние на многие органы и системы организма, в первую очередь, на центральную нервную систему, функциональные изменения в которой происходят раньше, чем диагностируется нарушение слуховой чувствительности. Поражение нервной системы под действием шума сопровождается раздражительностью, ослаблением памяти, апатией, подавленным настроением, изменением кожной чувствительности и другими нарушениями, в частности, замедляется скорость психических реакций, наступает расстройство сна и т. д. У работников умственного труда происходит снижение темпа работы, ее качества и производительности.
Действие шума может привести к заболеваниям желудочно-кишечного тракта,
сдвигам в обменных процессах (нарушение основного, витаминного, углеводного, белкового, жирового, солевого обменов), нарушению функционального состояния сердечнососудистой системы. Звуковые колебания могут восприниматься не только органами слуха, но и непосредственно через кости черепа (так называемая костная проводимость). При
действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.
Таким образом, воздействие шума может привести к сочетанию профессиональной
тугоухости (неврит слухового нерва) с функциональными расстройствами центральной
нервной, вегетативной, сердечно-сосудистой и других систем, которые могут рассматриваться как профессиональное заболевание – шумовая болезнь. Профессиональный неврит
слухового нерва (шумовая болезнь) чаще всего встречается у рабочих различных отраслей машиностроения, текстильной промышленности и пр. Случаи заболевания встречаются у
лиц, работающих на ткацких станках, с рубильными, клепальными молотками, обслуживающих прессо-штамповочное оборудование, у испытателей-мотористов и других профессиональных групп, длительно подвергающихся интенсивному шуму.
Нормирование уровня шума.
При нормировании шума используют два метода нормирования: по предельному спектру шума; уровню звука в дБ. Первый метод является основным для постоянных шумов и позволяет нормировать уровни звукового давления в восьми октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Шум на рабочих местах не должен превышать допустимых уровней, значения которых приведены в ГОСТ 12.1.003-76, соответствующие рекомендациям Технического комитета акустики при Международной организации по стандартизации. Совокупность восьми допустимых уровней звукового давления называется предельным спектром. Исследования показывают, что допустимые уровни уменьшаются с ростом частоты (более неприятный шум). Второй метод нормирования общего уровня шума, измеренного по шкале А, которая имитирует кривую чувствительности уха человека, и называемого уровнем звука в дБА, используется для ориентировочной оценки постоянного и непостоянного шума, так как в этом случае мы не знаем спектра шума.
Основные нормированные параметры для широкополосного шума приведены в
следующей таблице.
Для тонального и импульсного шума допустимые уровни должны приниматься на 5дБ меньше значений, приведенных в табл. 4. Нормированным параметром непостоянной* шума является эквивалентный по энергии уровень звука" широкополосного, постоянного и неимпульсного шума, оказывающего на человека такое же воздействие, как и непостоянный шум, (дБА). Этот уровень измеряется специальными интегрирующими шумомерами или определяется расчетным путем.
Методы борьбы с шумом. Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера. Основными из них являются:
• устранение причины шума или существенное его ослабление в самом источнике
при разработке технологических процессов и проектировании оборудования;
• изоляция источника шума от окружающей среды средствами звуко- и виброзащиты, звуко- и вибропоглощения;
• уменьшение плотности звуковой энергии помещений, отраженной от стен и перекрытий;
• рациональная планировка помещений;
• применение средств индивидуальной защиты от шума;
• рационализация режима труда в условиях шума;
• профилактические мероприятия медицинского характера.
Наиболее эффективный путь борьбы с шумом, причиной которого является вибрация, возникающая от ударов, сил трения, механических усилий и т.д., – улучшение конструкции оборудования (изменение технологии с целью устранения удара).
Снижение шума
и вибрации достигается заменой
возвратно-поступательного
При невозможности достаточно эффективного снижения шума за счет создания
совершенной конструкции той или иной машины следует осуществлять его локализацию
у места возникновения
путем применения звукопоглощающих
и звукоизолирующих конструкций
и материалов. Воздушные шумы ослабляются
установкой на машинах специальных
кожухов или размещением
(прокладки из
резины и пластмассы). Широко применяются
противошумные мастики на
Информация о работе Производственная вибрация и ее воздействие на человека