Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 08:26, контрольная работа
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
Введение. 3
Понятие ионизирующего излучения. Основные методы обнаружения ИИ. 4
Острая лучевая болезнь 5
Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ. 6
Основы радиоактивной безопасности. Нормы радиационной безопасности (НРБ-99). 7
Критерии для принятия решений в различных ситуациях. Требования к контролю за выполнением норм. 10
Список использованной литературы: 13
Оглавление
Введение. 3
Понятие ионизирующего излучения. Основные методы обнаружения ИИ. 4
Острая лучевая болезнь 5
Чтобы избежать ужасных
последствий ИИ, необходимо производить
строгий контроль служб радиационной
безопасности с применением приборов
и различных методик. Для принятия
мер защиты от воздействия ИИ их
необходимо своевременно обнаружить и
количественно оценить. Воздействуя
на различные среды ИИ вызывают в
них определенные физико-химические
изменения, которые можно
Основы радиоактивной безопасности. Нормы радиационной безопасности (НРБ-99). 7
Критерии для принятия решений в различных ситуациях. Требования к контролю за выполнением норм. 10
Список использованной литературы: 13
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.
Нет необходимости говорить о том
положительном, что внесло в нашу
жизнь проникновение в
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами органолептически: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6, т.е. Р > 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.
Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.
Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.
Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ЯВ. Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.
Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Вообще к ИИ относят: рентгеновское и g-излучения; излучения, состоящие из потока заряженных (a+, b±, протонов р+, тяжёлые ядра отдачи) и незаряженных частиц - p, m, k - мезонов, мюонов и др. частиц.
При авариях реакторов образуются a+,b± частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n°.
Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (gв воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.
Бета- частицы (электроны b- и позитроны b+ ) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.
Альфа – частицы (ядра гелия) a+ краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.
Заметим, что ионизирующая способность альфа и бета – частиц будет во многом зависеть от энергии, с которой они покидают «материнское» («дочернее») ядро. Проходя через среду (биологическую ткань) ИИ ионизируют ее, что приводит к физико-химическим или биологическим изменениям свойств среды(ткани). При ионизации организма нарушаются обменные процессы, нормальное функционирование нервной, эндокринной, имунной, дыхательной, сердечно-сосудистой и др. систем, в результате чего люди (животные) заболевают. Элементы технических устройств, особенно радиоэлектронной аппаратуры, при ионизации теряют или изменяют свои свойства и параметры, а при сильном облучении могут выйти из строя. Короче говоря, все живое и «неживое» не терпит излишнего облучения.
Последствия облучения для
людей могут быть самыми различными.
Они во многом определяются величиной
дозы облучения и временем её накопления.
Возможные последствия
Таблица 1.
Последствия облучения людей.
Радиационные эффекты облучения
Телесные (соматические).
Воздействуют на облучаемого. Имеют дозовый порог. |
Вероятностные телесные (соматические-стохастические).
Условно не имеют дозового порога. |
Гинетические.
Условно не имеют дозового порога. |
Острая лучевая болезнь |
Сокращение продолжительности жизни. |
Доминантные генные мутации. |
Хроническая лучевая болезнь. |
Лейкозы (скрытый период 7-12 лет). |
Рецессивные генные мутации. |
Локальные лучевые повреждения. |
Опухоли разных органов (скрытый период до 25 лет и более). |
Хромосомные абберации. |
К основным относятся:
-ионизационный, в котором
используется эффект ионизации
газовой среды, вызываемой
-сцинтилляционный, заключающийся
в том, что в некоторых
-химический, в котором
ИИ обнаруживаются с помощью
химических реакций, изменения
кислотности и проводимости, происходящих
при облучении жидкостных
-фотографический,
-метод, основанный на
проводимости кристаллов, т.е. когда
под воздействием ИИ возникает
ток в кристаллах, изготовленных
из диэлектрических материалов
и изменяется проводимость
Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.
Радиационная безопасность регламентируется помимо Закона «О радиационной Безопасности» - НРБ-99.
Таблица 2.
Зависимость эффектов от дозы однократного1 (кратковременного) облучения человека.
Доза |
Эффект | |
Грей |
Рад | |
50 |
5000 |
Пороговая доза поражения центральной нервной системы («электронная смерть») |
6,0 |
600 |
Минимальная абсолютно-смертельная доза |
4,0 |
400 |
Средне-смертельная доза (доза 50% выживания) |
1,5 |
150 |
Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад – 1ст., 200-400 рад – 2 ст., 400-600 рад – 3 ст., свыше 600 рад – 4ст.) |
1,0 |
100 |
Порог клинических эффектов |
0,1 |
10 |
Уровень удвоения генных мутаций |
Основные положения НРБ-99 сводятся к следующим.
а) облучение персонала и
б) облучение персонала и
в) облучение работников предприятий и населения природными источниками ИИ;
г) медицинское облучение
Требования НРБ сформулированы для каждого вида облучения.
Под ним понимается присутствие РВ техногенного происхождения на поверхности или внутри материала или тела человека, в воздухе или в др. месте, которые может привести к облучению в индивидуальной дозе более 10 мкЗв/год (1 мбэр/год).
а) персонал (лица, работающие с техногенными источниками – группа А, или находящиеся по условиям работы в сфере их воздействия – группа Б);
б) всё население, включая лиц из персонала вне сферы и условий их производственной деятельности.
Для всех категорий облучаемых лиц устанавливаются три класса нормативов:
а) основные дозовые пределы (таблица 2);
б) допустимые уровни монофакторного (для одного радионуклида или одного вида внешнего излучения, пути поступления) воздействия, являющиеся производными от основных дозовых пределов: пределы годового поступления, допустимые среднегодовые объёмные активности ДОА) и удельные активности ДУА) и т.д.
Причём в практике дозиметрических измерений могут также широко использоваться:
-Эффективная - коллективная, полувековая и другие дозы;
-Активность – удельная (Бк/кг), объёмная (мкКи/литр), поверхностная (мкКи/см2) или Ки/км2 и другие.
Таблица 3.
Основные дозовые пределы облучения.
Нормируемые величины |
Дозовые пределы | |
Лица из персонала (группа А) |
Лица из населения | |
Эффективная доза |
20мЗв(2бэр) в год в
среднем за любые |
1мЗв (0,1 бэр) в год
в среднем за любые |
Эквивалентная доза за год В хрусталике В коже В кистях и стопах |
150мЗв(15бэр) 500мЗв (50бэр) 500мЗв |
15мЗв(1,5бэр) 50мЗв(5бэр) 50мЗв |
Основные дозовые пределы
не включают в себя дозы от природных,
аварийных и медицинских
Информация о работе Понятие ионизирующего излучения. Основные методы обнаружения ИИ