Автор работы: Пользователь скрыл имя, 06 Декабря 2013 в 14:14, контрольная работа
Модель процесса жизнедеятельности в наиболее общем виде можно представить состоящей из двух элементов: человека и среды его обитания. Между собой эти элементы связаны двухсторонними связями (рис.1).
Прямые связи человека со средой очевидны.
Обратные связи обусловлены всеобщим законом реактивности материального мира.
Система “человек – среда” является двухцелевой:
одна цель состоит в достижении определенного эффекта в процессе деятельности;
вторая – в исключении нежелательных последствий от этой деятельности.
Введение.
1. Методы оценки риска.
2. Производственные излучения. Технические и организационные способы защиты.
2.1 Ультрафиолетовое излучение.
2.2 Инфракрасное излучение.
2.3 Ионизирующее излучение.
2.4 Лазерное излучение.
3. Задача.
Список используемой литературы.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВПО «Уральский государственный экономический университет»
Центр дистанционного образования
Контрольная работа
по дисциплине: Безопасность жизнедеятельности
по теме: Методы оценки риска. Производственные излучения. Технические и организационные способы защиты
Исполнитель: студент
группа ЮР-13 КЧ
Ф.И.О. Зайков Дмитрий Леонидович
2013
Введение.
1. Методы оценки риска.
2. Производственные излучения. Технические и организационные способы защиты.
2.1 Ультрафиолетовое излучение.
2.2 Инфракрасное излучение.
2.3 Ионизирующее излучение.
2.4 Лазерное излучение.
3. Задача.
Введение.
Необходимым условием
существования человеческого
Модель процесса жизнедеятельности в наиболее общем виде можно представить состоящей из двух элементов: человека и среды его обитания. Между собой эти элементы связаны двухсторонними связями (рис.1).
Прямые связи человека со средой очевидны.
Обратные связи обусловлены всеобщим законом реактивности материального мира.
Система “человек – среда” является двухцелевой:
Другими словами, окружающая нас природа рассматривается человеком с двух противоположных позиций. С одной стороны, для нормального существования нам необходимо обеспечивать стабильность всех факторов окружающей среды. Например, потепление, изменение давления, влажности, уровня радиации, уменьшение количества растений и т.д., может оказывать вредное влияние на человеческий организм. Насколько важна эта проблема, можно судить по возросшей роли “зеленых” в политической жизни развитых стран.
С другой стороны, жизнедеятельность человека невозможна без пагубного воздействия на природу. Извлечение полезных ископаемых, различные загрязнения грунта, вод и воздуха, выделение большого количества тепла – вот лишь небольшая часть “последствий” человеческой деятельности, которые оказывают вредное влияние на окружающую среду.
Именно в одновременности этих двух сторон состоит противоречие во взаимодействии человека с природной средой. Человеческая практика дает основание утверждать, что любая деятельность потенциально опасна (так называемая “аксиома о потенциальной опасности”).
Тема взаимодействия человека и окружающей среды выходит за пределы какой-либо одной науки или области человеческой деятельности. Это предопределило необходимость появление новой области знаний – безопасности жизнедеятельности (БЖД).
БЖД – комплексная дисциплина, изучающая возможности обеспечения безопасности человека, применительно к любому виду человеческой деятельности.
БЖД решает три взаимосвязанные задачи:
1. Методы оценки риска.
Риск - сочетание вероятности и последствий наступления событий.
Оценка риска - процесс, используемый для определения величины (меры) риска анализируемой опасности для здоровья человека, материальных ценностей, окружающей природной среды и других ситуаций, связанных с реализацией опасности. Оценка риска - обязательная часть анализа риска. Оценка риска включает анализ частоты, анализ последствий и их сочетаний.
Существуют четыре разных подхода к оценке риска.
Первый - инженерный. Он опирается на статистику поломок и аварий, на вероятностный анализ безопасности (ВАБ): построение и расчет так называемых деревьев событий и деревьев отказов - процесс основан на ориентированных графах. С помощью первых предсказывают, во что может развиться тот или иной отказ техники, а деревья отказов, наоборот, помогают проследить все причины, которые способны вызвать какое-то нежелательное явление. Когда деревья построены, рассчитывается вероятность реализации каждого из сценариев (каждой ветви), а затем - общая вероятность аварии на объекте.
Второй подход, модельный, - построение моделей воздействия вредных факторов на человека и окружающую среду. Эти модели могут описывать как последствия обычной работы предприятий, так и ущерб от аварий на них.
Первые два подхода основаны на расчетах, однако, для таких расчетов далеко не всегда хватает надежных исходных данных. В этом случае приемлем третий подход - экспертный: вероятности различных событий, связи между ними и последствия аварий определяют не вычислениями, а опросом опытных экспертов.
Наконец, в рамках четвертого подхода - социологического - исследуется отношение населения к разным видам риска, например с помощью социологических опросов.
То, что для определения риска используются четыре столь несхожих между собой метода, не должно удивлять. В разных задачах под риском следует понимать то вероятность какой-то аварии, то масштаб возможного ущерба от нее, а то и комбинацию двух этих величин. Описывая риск, нужно учитывать и выгоду, которую получает общество, когда на него идет (бесполезный риск недопустим, даже если он ничтожно мал). Иными словами, величина риска - это не какое-то одно число, а скорее вектор, состоящий из нескольких компонент. И поэтому мы имеем дело с так называемым многокритериальным выбором, процедура которого описывается теорией принятия решений.
Имеется много неопределенностей, связанных с оценкой риска. Анализ неопределенностей - необходимая составная часть оценки риска. Как правило, основные источники неопределенностей - информация по надежности оборудования и человеческим ошибкам, а также допущения применяемых моделей аварийного процесса. Чтобы правильно интерпретировать величины риска, надо понимать неопределенности и их причины. Анализ неопределенности - это перевод неопределенности исходных параметров и предложений, использованных при оценке риска, в неопределенность результатов.
2. Производственные
излучения. Технические и
В современном производстве распространены различные виды излучений: ультрафиолетовое, электромагнитное, инфракрасное и радиоактивное.
В практике животноводства и птицеводства широко применяют облучение животных в период стойлового содержания ультрафиолетовыми, а молодняка (ягнят, цыплят, телят, поросят) инфракрасными лучами.
Используются излучения для пастеризации молока, для ускорения развития растений, для уменьшения восприимчивости к болезням и в других случаях.
Под влиянием умеренного
ультрафиолетового облучения
Поглощение инфракрасных лучей кожным покровом - сложный биологический процесс, в котором участвует весь организм с его терморегуляторным аппаратом. Действие инфракрасных лучей вызывает переполнение кровеносных сосудов кровью (в результате нагрева кожи), что усиливает обмен веществ.
Инфракрасное
излучение имеет место в
Источники электромагнитных излучений - линии электропередач, различные высокочастотные генераторы, радиоволны.
Для облучения семян, растений, пищевых продуктов, для оценки эффективности удобрений, роли микроэлементов, плодородия почвы, качества ремонта и износостойкости деталей, для исследования механизма воздействия регуляторов роста и обмена веществ у животных используют искусственные радиоактивные вещества.
При обработке
материалов (пайка, резка, точечная сварка,
сверление отверстий в
2.1 Ультрафиолетовое излучение.
Естественным источником ультрафиолетового излучения (УФИ) является Солнце. Невидимые ультрафиолетовые (УФ) лучи появляются в источниках излучения с температурой выше 1500°С и достигают значительной интенсивности при температуре более 2000°С. Искусственными источниками УФИ являются газоразрядные источники света, электрические дуги (дуговые электропечи, сварочные работы), лазеры и др.
Методы защиты.
К средствам коллективной защиты от УФИ относятся различные устройства (оградительные, вентиляционные, автоматического контроля и сигнализации, дистанционного управления), а также знаки безопасности. Защиту от УФИ осуществляют различными экранами: физическими (в виде различных предметов, поглощающих, рассеивающих или отражающих лучи) и химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ). Для защиты используют изготовленную из тканей (поплина и др.) специальную одежду, а также очки с защитными стеклами. Полную защиту от УФИ всех волн обеспечивает флинтглас (стекло, содержащее окись свинца) толщиной 2 мм. При устройстве помещений учитывают, что отражающая способность различных отделочных материалов для УФИ и видимого света различна. Краски на масляной основе, оксиды титана и цинка плохо отражают УФИ, а меловая побелка, полированный алюминий — хорошо.
2.2 Инфракрасное излучение.
Инфракрасное излучение генерируется любым нагретым телом, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Нагретые тела, имеющие температуру выше 100°С, являются источником коротковолнового инфракрасного излучения.
Методы защиты.
Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем: Снижение интенсивности излучения источника (замена устаревших технологий современными и др.). Защитное экранирование источника или рабочего места (создание экранов из металлических сеток и цепей, облицовка асбестом открытых проёмов печей и др.). Использование средств индивидуальной защиты (использование для защиты глаз и лица щитков и очков со светофильтрами, защита поверхности тела спецодеждой из льняной и полульняной пропитанной парусины). Лечебно-профилактические мероприятия (организация рационального режима труда и отдыха, организация периодических медосмотров и др.).
2.3 Ионизирующее излучение.
Биологическое
воздействие ионизирующего
Методы защиты.
Средствами коллективной защиты от ионизирующих излучений являются различные устройства (герметизирующие, вентиляции и очистки воздуха, транспортирования и хранения изотопов, автоматического контроля и сигнализации, дистанционного управления), а также знаки безопасности, емкости для радиоактивных изотопов и др.
На работах класса I и отдельных работах класса II средства индивидуальной защиты включают комбинезон или костюм, спец-белье, носки, спец-обувь, перчатки, бумажные полотенца и носовые платки разового пользования, средства защиты органов дыхания. На работах класса II и отдельных работах класса III работающих обеспечивают халатами, легкой обувью, перчатками, шапочками и при необходимости средствами защиты органов дыхания. В необходимых случаях используют изолирующие шланговые костюмы (пневмокостюмы), очки, щитки.
2.4 Лазерное излучение.
Лазерное излучение - электромагнитное излучение оптического диапазона, обладающее такими свойствами, как когерентность, монохроматичность, поляризованность, направленность, что позволяет создать большую локальную концентрацию энергии.
Оптические квантовые генераторы (ОКГ), или лазеры, находят широкое применение в различных сферах жизнедеятельности: обработка материалов (резка, пайка, точечная сварка, сверление отверстий в металлах, сверхтвердых материалах и кристаллах), строительство, радиоэлектроника, медицина, космос и т.д.