Методология и методы, применяемые в БЖД. Системный анализ

Автор работы: Пользователь скрыл имя, 23 Января 2015 в 10:31, контрольная работа

Краткое описание

1. Характеристика элементов общей системы «человек–среда обитания».
2. Информационная, биофизическая, энергетическая, пространственно–антропометрическая и технико-эстетическая совместимость человека и окружающей его среды.

Прикрепленные файлы: 1 файл

бжд.docx

— 123.90 Кб (Скачать документ)

При выборе конкретных методов контроля необходимо руководствоваться методическими указаниями на методы определения вредных веществ в воздухе рабочей зоны, утвержденными Минздравом России (до 1996 года – Госкомсанэпиднадзором России). Аппаратура и приборы, используемые при санитарно-химических исследованиях, подлежат поверке в установленном порядке.

Контроль воздуха осуществляют при характерных производственных условиях (ведение производственного процесса в соответствии с технологическим регламентом) с учетом:

·особенностей технологического процесса (непрерывный, периодический), температурного режима, количества выделяющихся вредных веществ и др.;

·физико-химических свойств контролируемых веществ (агрегатное состояние, плотность, давление пара, летучесть и др.) и возможности превращения последних в результате окисления, деструкции, гидролиза и др. процессов;

·класса опасности и биологического действия вещества;

·планировки помещений (этажность здания, наличие межэтажных проемов, связь со смежными помещениями и др.);

·количества и вида рабочих мест (постоянные и непостоянные)

·реального времени пребывания работающих на производственном участке в течение рабочей смены.

Отбор проб воздуха проводят в зоне дыхания работника, либо с максимальным приближением к ней воздухозаборного устройства (на высоте 1,5 м от пола).

При поступлении в воздух помещения теплоты и влаги изменяются его физические свойства, а при поступлении различных газов, особенно ядовитых (токсичных), паров и пыли изменяется его химический состав.

Количество ядовитых газов и паров, поступающих в помещение, зависит от особенностей технологического процесса, применяемого сырья, а также от промежуточных и конечных продуктов производства. Отдельные вещества, поступая в воздух в виде паров, переходят в жидкое или твердое состояние, другие остаются в парообразном или газообразном состоянии.

При производственных процессах наиболее часто выделяются следующие химические вещества:

Оксид углерода СО — чрезвычайно ядовитый газ без цвета и запаха, который образуется в результате неполного сгорания вещества, содержащего углерод.

Оксид углерода — составная часть многих газовых смесей - может выделяться при сжигании различных топлив, в том числе природного и искусственного газа, продуктов перегонки нефти. Оксид углерода образуется в цехах, где производственный процесс сопровождается возгонкой смазывающих масел и других продуктов. Предельно допустимая концентрация СО в воздухе 0,03 мг/л.

Сернистый ангидрид (сернистый газ) SO2 — бесцветный газ с характерным резким запахом, который образуется при сжигании топлива и других продуктов, содержащих серу. Сернистый газ обладает раздражающим воздействием на человека.

Аммиак NН3 — бесцветный газ с резким удушливым запахом, который применяется в холодильных установках и в процессах покрытий металлов. Много аммиака выделяется в животноводческих и птицеводческих помещениях. При соединении с водяными парами аммиак быстро распространяется в помещении.

Хлор Сl — желто-зеленый газ с резким запахом, ядовитый, сильно раздражает дыхательные пути. Непосредственно в производстве хлор используют в процессах хлорирования, травления, дезинфекции. Предельно допустимая концентрация в воздухе 1 мг/м³.

Синильная кислота (цианистый водород) HCN — бесцветная летучая жидкость с характерным запахом миндаля. Выделяется при использовании цианистых солей кальция, натрия, аммония. Синильная кислота и соли (цианиды) — очень токсичные быстродействующие соединения. На воздухе, особенно если воздух повышенной влажности, соли легко разлагаются с выделением паров синильной кислоты. Пары синильной кислоты несколько легче воздуха.

Оксиды азота образуются при действии азотной кислоты на органические вещества. Азотную кислоту применяют в металлообрабатывающей (травление, гальванопокрытие), химической промышленности и других видах производств. Оксиды азота образуются в воздухе при работе с рентгеновской  аппаратурой, электронно-лучевыми установками  и  др.

Пары растворителей углеводородов выделяются в основном при окраске изделий, разбавлении и растворении лаков и красок, обезжиривании изделий, растворении органических веществ. Распространены следующие растворители: бензол, ацетон, толуол, ксилол метиловый, этиловый и пропиловые спирты, дихлорэтан и др.

Промышленная пыль — это дисперсная система, которая состоит из мелких частичек твердого или жидкого вещества, рассеянных в газообразной среде. Пыли, образующиеся при горении, плавлении, возгонке и других химических или термических процессах, называются дымами. Пыль промышленных цехов представляет собой самые разнообразные смеси. По своим физическим и химическим свойствам пыль отличается от плотного материала, из которого она образовалась. По структуре пылинки подразделяются на волокнистые, иглообразные, хлопьевидные и др. Действие пыли на человека определяется ее видом и размером частиц. Наиболее опасны для человека мелкодисперсные пыли, которые не задерживаются на слизистой оболочке верхних дыхательных путей.

Предельно допустимые концентрации (ПДК) для 525 вредных паров, газов и пылей, выделяющихся в производственных цехах современных промышленных предприятий, регламентируются действующими санитарными нормами СН 245-71 и ГОСТ 12.1.005-88 ССБТ \"Общие санитарно-гигиенические требования к воздуху рабочей зоны\".

Санитарными нормами установлены те пределы допустимых концентраций вредных веществ в воздухе, превышение которых может создать угрозу для здоровья работающих в цехах людей. Предельно допустимые концентрации вредных веществ в промышленных цехах поддерживаются вентиляционными системами, которые должны быть правильно запроектированы в соответствии с технологией процесса, изготовлены и смонтированы. Вентиляционные системы следует умело и экономично эксплуатировать. 
 
Высокий технический уровень нашей промышленности, постоянное совершенствование техники и технологического процесса позволяют применять самые радикальные меры для предупреждения профессиональных отравлений и профессиональных заболеваний. Общие меры предупреждения возникновения профессиональных отравлений и заболеваний сводятся к следующим.

1. Устранение вредных  и особенно ядовитых веществ  из производства. В качестве примера  можно привести замену свинцовых  пигментов в красках цинковыми, устранение марганца из электродного производства и т. д.

2. Механизация и автоматизация  производственных процессов, рационализация  технологии, герметизация аппаратуры.

3. Стандартизация сырья  с целью устранения ядовитых  примесей, например, мышьяка в кислотах, предназначенных для травления.

4. Выбор наименее токсичных  веществ в случаях, когда по условиям технологии такие замены допустимы. Например, замена бензола и других ароматических углеводородов при составлении красок, применение малотоксичных рутил-карбонатных электродов вместо высокотоксичных рудно-кислых и т. д.

5. Ограничение и полное  запрещение применения высокотоксических  веществ в. тех случаях, где их  применение не является обязательной  необходимостью. 

6. Выделение наиболее  опасных процессов в специальные  изолированные помещения. 

7. Рациональное устройство  вентиляционных установок в виде  местных отсосов (вытяжные шкафы, камеры, укрытия) и оборудование  общих систем вентиляции в  помещениях, обеспечивающих снижение  концентраций паров, газов и пыли  до предельно допустимых.

8. Дистанционное наблюдение  за ходом технологического процесса  или автоматическое контролирование  его, а также своевременный планово-предупредительный  ремонт оборудования.

9. Мероприятия по личной  гигиене работающих и индивидуальной профилактике. Снабжение работающих за счет предприятия спецодеждой и другими приспособлениями по индивидуальной защите, а также мылом, зубными щетками, порошком и т. д.

10. Предварительный и периодический  медицинские осмотры в целях  правильной расстановки рабочих  с учетом состояния их здоровья, а также выявление наиболее  ранних признаков действия некоторых  ядов, вызывающих хронические профессиональные  отравления.

11. Санитарно-техническая  пропаганда и инструктаж. Это  мероприятие предусматривает обучение  безопасными методам работы, правильному  пользованию защитными мазями, пастами, спецодеждой и другими индивидуальными  средствами защиты. 
 
 
Раздел 3. ТЕХНИКА БЕЗОПАСНОСТИ 
 
Тема 6. Атмосферное электричество: характеристика и действие на людей, здания и сооружения. Молниезащита: категорирование, требования к молниезащите зданий и сооружений (РД 34.21.122–87). Принципы расчета молниезащиты. Защита от статического электричества.

 
Атмосферное электричество проявляется в виде молнии, разряд которой может послужить импульсом воспламенения, вызвать пожар и разрушение зданий и сооружений. Поражения прямыми ударами молнии называются первичными воздействиями молнии. Воздействие молнии в результате электростатической индукции заряженного грозового облака (наведение на изолированные от земли части зданий и сооружений электрических зарядов, возникающих в результате разряжения облака) и электромагнитного влияния тока грозового разряда (появление э. д. с. в контурах, перпендикулярных к электромагнитному полю, возникающему во время удара молнии) называют вторичным воздействием молнии.

Во время грозового разряда в течение примерно 100 икс в канале молнии проходит электрический ток величиной 100— 200 кА и достигается температура выше 30000 °С. Чрезвычайно быстро (почти мгновенно) нагретый воздух расширяется, формирует мощную взрывную волну, проносящуюся с огромной скоростью и большим звуковым эффектом.

Возникающее при этом атмосферное электричество оказывает тепловое, механическое (прямой удар молнии) и электромагнитное (вторичное проявление атмосферного электричества) воздействие на здания, сооружения, технологическое оборудование, коммуникационные линии и другие объекты. Огромный электрический заряд молнии, проходя при соответствующих условиях через токоотвод, трубопроводы, электрические провода, выделяет большое количество тепловой энергии и может мгновенно расплавить, разрушить, испарить поражаемые объекты. Для предотвращения этих опасных разрушений ПУЭ рекомендуют использовать в опасных грозовых районах в качестве молниеотводов проводники с минимальной площадью поперечного сечения: для медных проводников — 0,16 см2, для алюминиевых—0,25 см2, для стальных — 0,50 см2.

Атмосферное электричество может стать источником пожара при прямом ударе молнии в промышленный объект, а также при образовании искр от токов, вызванных атмосферным электричеством.

Источниками зажигания могут быть открытый огонь и искры, тепловое проявление электрического тока и атмосферного электричества, тепловое проявление механической энергии и химических реакций, атмосферное электричество.

Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по классификации «Правил устройства электроустановок» (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305— 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б — не менее 95 %.

Для защиты объектов от прямых ударов молнии сооружаются молниеотводы, принимающие на себя ток молнии и отводящие его в землю.

Молниезащи́та (громозащи́та, грозозащи́та) — это комплекс технических решений и специальных приспособлений для обеспечения безопасности здания, а также имущества и людей находящихся в нем.

На земном шаре ежегодно происходит до 16-и миллионов гроз, то есть около 44 тысяч за день. Прямой удар молнии очень опасен для здоровья людей, нередки случаи смертельного исхода.

Для зданий и сооружений угрозами вследствие непосредственного контакта канала молнии с поражаемыми объектами являются возможность возгорания либо разрушения, а также повреждение чувствительного оборудования вследствие сопутствующего молнии импульсного электромагнитного поля.

Молниезащита зданий разделяется на внешнюю и внутреннюю.

Внешняя молниезащита представляет собой систему, обеспечивающую перехват молнии и отвод её в землю, тем самым, защищая здание (сооружение) от повреждения и пожара. Система внешней молниезащиты, организованная по принципу молниеприёмной сетки, проектируется индивидуально под каждое конкретное здание. В момент прямого удара молнии в строительный объект правильно спроектированное и сооруженное молниезащитное устройство должно принять на себя ток молнии и отвести его по токоотводам на заземление. Прохождение тока молнии должно произойти без ущерба для защищаемого объекта и быть безопасным для людей, находящихся как внутри, так и снаружи этого объекта.

Информация о работе Методология и методы, применяемые в БЖД. Системный анализ