Классификация строительных конструкций и материалов по возгораемости

Автор работы: Пользователь скрыл имя, 09 Мая 2014 в 15:50, реферат

Краткое описание

Законодательство предусматривает несколько видов нормирования рабочего времени.
Нормальной признается продолжительность рабочего времени, равная полной или сокращенной его норме, установленной государством. Полная норма продолжительности рабочего времени не может превышать 40 часов в неделю. Эта норма распространяется на всех работников, которые трудятся в обычных условиях. Указанная норма является максимально допустимой. Эта норма не может быть увеличена локальными актами, трудовыми договорами.

Содержание

1. Как законодательно нормируется рабочее время……………………………3
1.1 Понятие и виды рабочего времени. Режим рабочего времени…………….5
1.2 Сверхурочные работы. Ненормированный рабочий день…………………6
2. Опасные и вредные производственные факторы…………………………….7
3. Механизм воздействия на организм человека радиоактивных излучений..10
3.1 Способы защиты от радиоактивных излучений…………………………..12
4. Действие электрического тока на организм человека……………………..14
4.1 Виды поражения током……………………………………………………..14
4.2 Факторы опасности поражения человека электрическим током…………15
5. Какое оборудование на предприятии работает под давлением……………16
5.1 Причины взрывов сосудов работающих под давлением………………….16
6. Классификация строительных конструкций и материалов по возгораемости……………………………………………………………………17
6.1 Предел огнестойкости……………………………………………………….19
Список литературы………………………………………………………………

Прикрепленные файлы: 1 файл

Документ Microsoft Word (2).doc

— 96.00 Кб (Скачать документ)

Состояние условий труда, при котором исключено воздействие на работающих опасных и вредных производственных факторов, называется безопасностью труда. Безопасность жизнедеятельности в условиях производства имеет и другое название - охрана труда.

Охрана труда определялась как система законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности в процессе труда.

 

3. Механизм воздействия  на организм человека радиоактивных  излучений

 

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. Организм человека реагирует на радиацию, а не на ее источник.

Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении.

Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.

Внутреннее облучение значительно опаснее внешнего.

В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один - два сантиметра; наиболее безобидное - излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении. Другой способ облучения - при попадании радионуклидов внутрь организма с воздухом, пищей и водой - называют внутренним.

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

Естественные радионуклиды делятся на четыре группы:

-долгоживущие (уран-238, уран-235, торий-232);

-короткоживущие (радий, радон);

- долгоживущие одиночные, не образующие  семейств (калий-40);

- радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Основную часть дозы облучения от радона человек получает, находясь в закрытых, непроветриваемых помещениях. Родон может проникать сквозь трещины в фундаменте, через пол из земли и накапливаться в основном в нижних этажах жилых зданий. Одним из источников радона могут быть конструкционные материалы, используемые в строительстве. К ним в первую очередь относятся такие материалы, как гранит, пемза, глинозем.

По мере подъема над поверхностью Земли (с удалением от источника) интенсивность облучения ионизирующими излучениями от земных источников постепенно уменьшается.

Другой естественный источник ионизирующего излучения -- космос. Из него на Землю поступают космические лучи, представленные потоками высокоэнергетических протонов.

Эффекты воздействия радиации на человека обычно делятся на две категории

1) Соматические (телесные) - возникающие  в организме человека, который  подвергался облучению.

2) Генетические - связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.

Радиационные эффекты облучения человека

Соматические эффекты:

- Лучевая болезнь 

- Локальные лучевые поражения 

- Лейкозы 

- Опухоли разных органов

Генетические эффекты:

- Генные мутации

- Хромосомные аберрации

 

3.1 Способы защиты от  радиоактивных излучений

 

Несмотря на высокую опасность, которую несет в себе практически любой источник радиации, методы защиты от облучения все же существуют. Все способы защиты от радиационного воздействия можно разделить на три вида:

- время

- расстояние

- специальные экраны.

 

Защита временем. Смысл этого метода защиты от радиации заключается в том, чтобы максимально уменьшить время пребывания вблизи источника излучения. Чем меньше времени человек находится вблизи источника радиации, тем меньше вреда здоровью он причинит.

Защита расстоянием. Если Вы обнаружили вблизи себя предмет, являющийся источником радиации - такой, который может представлять опасность для жизни и здоровья, необходимо удалиться от него на расстояние, где радиационный фон и излучение находятся в пределах допустимых норм. Также можно вывести источник радиации в безопасную зону или для захоронения.

Противорадиационные экраны и спецодежда. В некоторых ситуациях просто необходимо осуществлять какую-либо деятельность в зоне с повышенным радиационным фоном. Находиться в зонах повышенного риска без использования средств индивидуальной защиты опасно не только для здоровья, но и для жизни. Специально для таких случаев были разработаны средства индивидуальной защиты от радиации.

Дозиметрические приборы для измерения ионизирующих излучений (ИИ):

Радиометры - используются для измерения плотности потока и мощности доз ИИ, а так же активности радионуклидов.

Спектрометры - предназначены для изучения распределения излучений по энергиям, заряду, массам частиц ИИ, то есть, для детального анализа образцов каких-либо материалов, источников ИИ.

Дозиметры - применяют для измерения индивидуальной эквивалентной дозы и мощности доз рентгеновского, бета- и гамма-излучения в диапазоне энергий от 50 кэВ до 2-3 МэВ. Распространенные модели: ДКГ и ДКС (индивидуальные), МКС (дозиметр-радиометр, на фото) - отличаются по классу точности и опциям (бытовые или профессиональные), количеству и типу детекторов, конструкции (переносные или стационарные) и т.д.

В качестве детектора радиации применяется, обычно, счётчик Гейгера-Мюллера. Бета фильтр - двухслойный, из меди и свинца (со всех сторон экранирует датчик).

Широкий диапазон измерений, максимально высокая точность и надёжность в работе - есть только у полнофункциональных приборов, нормальных размеров и профессионального класса.

 

4. Действие электрического тока на организм человека

 

Термическое воздействие заключается в нагреве тканей и биологических сред организма, что ведет к перегреву всего организма и, как следствие, нарушению обменных процессов и связанных с ним отклонений.

Электролитическое воздействие заключается в разложении крови, плазмы и прочих физиологических растворов организма, после чего они уже не могут выполнять свои функции.

Биологическое воздействие связано с раздражением и возбуждением нервных волокон и других органов.

 

4.1 Виды поражения током

 

Различают два основных вида поражений электрическим током: электрические травмы и удары.

К электротравмам относятся:

-электрический ожог - результат теплового воздействия электрического тока в месте контакта;

-электрический знак - специфическое поражение кожи, выражающееся в затвердевании и омертвении верхнего слоя;

-металлизация кожи - внедрение в кожу мельчайших частичек металла;

-электроофтальпия - воспаление наружных оболочек глаз из-за воздействия ультрафиолетового излучения дуги;

-механические повреждения, вызванные непроизвольными сокращениями мышц под действием тока.

Электрическим ударом называется поражение организма электрическим током, при котором возбуждение живых тканей сопровождается судорожным сокращением мышц.

В зависимости от возникающих последствий электроудары делят на четыре степени:

I - судорожное сокращение мышц  без потери сознания;

II - судорожное сокращение мышц  с потерей сознания, но с сохранившимися  дыханием и работой сердца;

III - потеря сознания и нарушение  сердечной деятельности или дыхания (или того и другого);

IV - состояние клинической смерти.

 

4.2 Факторы тяжести поражения  током

 

Тяжесть поражения электрическим током зависит от многих факторов:

- силы тока;

- электрического сопротивления тела человека;

- длительности протекания тока через тело;

- природы и частоты тока;

- индивидуальных свойств человека;

- условий окружающей среды.

Основной фактор, обусловливающий ту или иную степень поражения человека, - сила тока. Для характеристики его воздействия на человека установлены три критерия:

- пороговый ощутимый ток - наименьшее  значение тока, вызывающего ощутимые  раздражения;

- пороговый неотпускающий ток - значение тока, вызывающее судорожные  сокращения мышц, не позволяющие  пораженному освободиться от  источника поражения;

- пороговый фибрилляционный ток - значение тока, вызывающее фибрилляцию  сердца.

Фибрилляцией называются хаотические и разновременные сокращения волокон сердечной мышцы, полностью нарушающие ее работу

 

5. Какое оборудование  на предприятии работает под  давлением

 

На каждом современном промышленном предприятии в технологическом процессе используются сосуды работающие под давлением. Ёмкости, относящиеся к сосудам работающим под давлением, составляют внушительный перечень. Это технологическое оборудование различной степени сложности, различного типа и назначения: оборудование для термообработки и массообменных процессов, ёмкости, емкостное оборудование, емкостные сварные аппараты, резервуары, нестандартное оборудование, химические реакторы, фильтрационные аппараты, аппараты с перемешивающими устройствами различных типов, автоклавы, подземные дренажные емкости, сепараторы нефтегазового типа, воздухосборники для стационарных компрессоров общего назначения, вакуумное оборудование и т.д.

 

5.1 Причины взрывов сосудов  работающих под давлением

 

Сосуды работающие под давлением это объекты повышенной опасности, поэтому они требуют квалифицированной эксплуатации и надзора, соответствующей подготовки для безопасной эксплуатации.

Основная опасность при эксплуатации таких сосудов заключается в возможности их разрушения при внезапном адиабатическом расширении газов и паров (т.е. физический взрыв). Причинами взрывов сосудов, работающих под давлением, могут быть ошибки, допущенные при проектировании и изготовлении сосуда, дефекты материалов, потеря прочности в результате местных перегревов, ударов, превышение рабочего давления в результате отсутствия или неисправности контрольно-измерительных приборов, отсутствие или неисправность предохранительных клапанов, мембран, запорной и отключающей арматуры.

Особенно опасны взрывы сосудов, содержащих горючую среду, т.к. осколки резервуаров даже большой массы (до нескольких тонн) разлетаются на расстояние до нескольких сот метров и при падении на здания, технологическое оборудование, емкости вызывают разрушения, новые очаги пожара, гибель людей.

 

6. Классификация строительных  конструкций и материалов по  возгораемости

 

Согласно ОСТ 782--73 «Горение и пожарная опасность веществ» все строительные материалы по их способности возгораться (воспламеняться) под действием источника зажигания подразделяют на три группы: негорючие, трудногорючие и горючие.

Негорючие материалы под воздействием огня или высокой температуры не тлеют и не обугливаются. К ним относят все естественные и искусственные неорганические материалы (пемзу, туф, мрамор, глиняный и силикатный кирпич, бетон, железобетон и др.), применяемые в строительстве металлы, а также гипсовые и гипсоволокнистые плиты при содержании органической части до 8% массы, минераловатные плиты на синтетическом, крахмальном или битумном связующем при содержании его до 6% массы.

Трудногорючие материалы способны гореть под воздействием источника зажигания, но не способны к самостоятельному горению после его удаления. Трудногорючими являются материалы, состоящие из негорючих и горючих составляющих. Это асфальтовый бетон, гипсовые и бетонные материалы, содержащие органического наполнителя более 8% массы, минераловатные плиты на битумном связующем при содержании его от 7 до 15%, глиносоломенные материалы со средней плотностью менее 900 кг/м3, войлок, вымоченный в глиняном растворе, древесина, подвергнутая глубокой пропитке огнезащитными составами, цементный фибролит, некоторые полимерные материалы и др.

Информация о работе Классификация строительных конструкций и материалов по возгораемости