Автор работы: Пользователь скрыл имя, 05 Мая 2015 в 03:29, реферат
В целях обеспечения требуемого качества конечного продукта (законченного производством изделия) необходимо вести контроль не только качества материала, но и соблюдения режимов технологических процессов, «контролировать геометрические параметры, качество обработки поверхности деталей и др.
Введение 3
I. Капиллярный метод неразрушающего контроля 5
II. Радиографический метод неразрушающего контроля 11
Заключение 19
Список литературы
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
федеральное государственное бюджетное образовательное УЧРЕЖДЕНИЕ ВЫСШЕГО профессионального образования
«тюменский государственный НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»
Институт транспорта
Кафедра ТУР
РЕФЕРАТ
по дисциплине: "Диагностика оборудования"
на тему: «Чувствительность методов неразрушающего контроля: капиллярного и радиографического».
Выполнил: студент группы ЭОТб(зс) 12-1
Андреянов В.В.
Проверил: К.т.н. А.Л. Пимнев
г. Тюмень – 2015
Содержание
Введение 3
I. Капиллярный метод неразрушающего контроля 5
II. Радиографический метод неразрушающего контроля 11
Заключение 19
Список литературы 20
В целях обеспечения требуемого качества конечного продукта (законченного производством изделия) необходимо вести контроль не только качества материала, но и соблюдения режимов технологических процессов, «контролировать геометрические параметры, качество обработки поверхности деталей и др. Технические измерения, оценка качества обработанной поверхности (овальность, конусность, шероховатость и др.) несут информацию о внешней стороне дела. Это очень важно, но еще более важно проникнуть в материал, знать его структуру, химический состав, качество и глубину термической обработки, распределение внутренних напряжений, характер и распределение возможных внутренних и поверхностных металлургических дефектов.
Существуют различные методы контроля, их можно разделить на две большие группы: контроль качества с разрушением и без разрушения материала (заготовки, детали).
Более эффективный контроль дефектов, нарушающих сплошность, однородность макроструктуры металла, отклонений химического состава следует проводить с помощью физических методов неразрушающего контроля – дефектоскопии, основанных на исследовании изменений физических характеристик металла. При использовании неразрушающих методов контроля устанавливаются нормы браковки, в противном случае изделия могут незаслуженно выбраковываться или, наоборот, проникать в эксплуатацию с дефектами. Применять методы неразрушающего контроля необходимо с учетом их возможности, чувствительности, производительности, эффективности.
Неразрушающий контроль дает возможность проверить качество конструкций и материалов до вовлечения их в строительство и тем самым не допустить использования дефектных конструкций при строительстве, а, следовательно, предотвратить аварии и катастрофы. Данные о дефектах, полученные на ранних стадиях производства, позволяют техническим службам предприятия совершенствовать технологические процессы, улучшать режимы обработки металла в горячем и холодном состоянии. Применяя методы неразрушающего контроля, можно уменьшить вес деталей и всего изделия в целом путем уменьшения коэффициентов запаса прочности.
Капиллярная дефектоскопия - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.
В большинстве случаев по техническим требованиям необходимо выявлять настолько малые дефекты, что заметить их при визуальном контроле невооруженным глазом практически невозможно. Применение же оптических измерительных приборов, например лупы или микроскопа, не позволяет выявить поверхностные дефекты из-за недостаточной контрастности изображения дефекта на фоне металла и малого поля зрения при больших увеличениях. В таких случаях применяют капиллярный метод контроля.
Капиллярная дефектоскопия предназначена для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности. Капиллярные методы неразрушающего контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.
Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из черных и цветных металлов, легированных сталей, чугуна, металлических покрытий, пластмасс, стекла и керамики в энергетике, авиации, ракетной технике, судостроении, химической промышленности, металлургии, при строительстве ядерных реакторов, в автомобилестроении, электротехники, машиностроении, литейном производстве, штамповке, приборостроении, медицине и других отраслях. Для некоторых материалов и изделий этот метод является единственным для определения пригодности деталей или установок к работе. Капиллярный контроль используется также при течеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации.
Достоинствами капиллярных методов дефектоскопии являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам.
Преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).
Капиллярные методы дефектоскопии подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный.
Приборы и оборудования для капиллярного контроля:
Чувствительность капиллярного контроля – способность выявления несплошностей данного размера с заданной вероятностью при использовании конкретного способа, технологии контроля и пенетрантной системы. Согласно ГОСТ 18442-80 класс чувствительности контроля определяют в зависимости от минимального размера выявленных дефектов с поперечными размером 0,1 - 500 мкм.
Выявление дефектов, имеющих ширину раскрытия более 0,5 мм, капиллярными методами контроля не гарантируется.
С чувствительностью по 1 классу с помощью капиллярной дефектоскопии контролируют лопатки турбореактивных двигателей, уплотнительные поверхности клапанов и их гнезд, металлические уплотнительные прокладки фланцев и др. (выявляемые трещины и поры величиной до десятых долей мкм). По 2 классу проверяют корпуса и антикоррозийные наплавки реакторов, основной металл и сварные соединения трубопроводов, детали подшипников (выявляемые трещины и поры величиной до нескольких мкм).
Чувствительность дефектоскопических материалов, качество промежуточной очистки и контроль всего капиллярного процесса определяются на контрольных образцах (эталонах для цветной дефектоскопии ЦД), т.е. на металлических определенной шероховатости с нанесенными на них нормированными искусственными трещинами (дефектами).
Класс чувствительности контроля определяют в зависимости от минимального размера выявляемых дефектов. Постигаемую чувствительность в необходимых случаях определяют на натурных объектах или искусственных образцах с естественными или имитируемыми дефектами, размеры которых уточняют металлографическими или другими методами анализа.
Согласно ГОСТ 18442-80 класс чувствительности контроля определяется в зависимости от размера выявляемых дефектов. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта. Поскольку глубина и длина дефекта также оказывают существенное влияние на возможность его обнаружения (в частности, глубина должна существенно больше раскрытия), эти параметры считаются стабильными. Нижний порог чувствительности, т.е. минимальная величина раскрытия выявленных дефектов ограничивается тем, что весьма малое количество пенетранта; задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности.
Установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов:
Класс чувствительности |
Ширина раскрытия дефекта, мкм |
I |
Менее 1 |
II |
От 1 до 10 |
III |
От 10 до 100 |
IV |
От 100 до 500 |
Капиллярный метод неразрушающего контроля (ГОСТ 18442-80) основан на капиллярном проникновении внутрь дефекта индикаторной жидкости и предназначен для выявления дефектов, имеющих выход на поверхность объекта контроля. Данный метод пригоден для выявления несплошностей с поперечными размером 0,1 - 500 мкм, в том числе сквозных, на поверхности черных и цветных металлов, сплавов, керамики, стекла и т.п. Широко применяется для контроля целостности сварного шва. Цветной или красящий пенетрант наносится на поверхность объекта контроля. Благодаря особым качествам, которые обеспечиваются подбором определенных физических свойств пенетранта: поверхностного натяжения, вязкости, плотности, он, под действием капиллярных сил, проникает в мельчайшие дефекты, имеющие выход на поверхность объекта контроля. Проявитель, наносимый на поверхность объекта контроля через некоторое время после осторожного удаления с поверхности пенетранта, растворяет находящийся внутри дефекта краситель и за счет диффузии “вытягивает” оставшийся в дефекте пенетрант на поверхность объекта контроля.
Имеющиеся дефекты видны достаточно контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные точки - на поры.
Процесс обнаружения дефектов капиллярным методом разделяется на 5 стадий (проведение капиллярного контроля):
Основные капиллярные методы неразрушающего контроля подразделяют в зависимости от типа проникающего вещества на следующие:
Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на:
Радиографические методы радиационного неразрушающего контроля основаны на преобразовании радиационного изображения контролируемого объекта в радиографический снимок или запись этого изображения на запоминающем устройстве с последующим преобразованием в световое изображение.
На практике этот метод наиболее широко распространен в связи с его простотой и документным подтверждением получаемых результатов. В зависимости от используемых детекторов различают: