Альтернативные виды энергии и их использование

Автор работы: Пользователь скрыл имя, 25 Апреля 2012 в 19:35, реферат

Краткое описание

1. Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.
Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Прикрепленные файлы: 1 файл

Альтернативные виды энергии и их использование doc.doc

— 1.08 Мб (Скачать документ)
  1. Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

    Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой  круглый год и возможно большие  уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление  пахотных земель
  • строительство ведется там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
 
 
 
 

  1. Теплоэлектростанция (ТЭС)электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.
 

    Преимущества

  • требуют меньших капиталовложений по сравнению с другими электростанциями
  • могут быть построены в любом месте независимо от наличия топлива
  • занимают меньшую площадь по сравнению с ГЭС 

Недостатки

  • загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти
  • более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями.
 
 
 

     
     

  1. Атомная электростанция (АЭС) - ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками.
 

    Преимущества

    • стоимость производимой электроэнергии
    • практическая независимость от источников топлива из-за небольшого объёма используемого топлива
    • небольшие расходы на перевозку ядерного топлива
    • относительная ТЭС экологическая чистота

Недостатки

  • тепловое загрязнение, вызванное большими расходами технической воды для охлаждения конденсаторов турбин
  • тяжелые последствия аварий
  • ликвидация АЭС после выработки ресурса
 
 

      
 
 
 

    Альтернативная энергетика современности

    Альтернативная энергияэто энергия, получаемая из возобновляемых, неисчерпаемых источников энергии – ветра, солнца, биомассы, внутреннего тепла земли. Для получения альтернативной энергии используют специальные установки: ветрогенераторы, солнечные батареи, солнечные коллекторы, биогазовые реакторы и другие установки.

    Ветроэлекторостанции (ветрогенераторы)

    

    Альтернативная  энергия, построенная на использовании возобновляемых источников энергии, может стать той путеводной звездой, которая выведет Россию из продолжительного социально-экономического кризиса на путь устойчивого развития. Возобновляемые энергоресурсы энергии распределены относительно равномерно, поэтому лидерство в их использовании скорее всего завоюют страны с квалифицированной рабочей силой, восприимчивостью к нововведениям, эффективными финансовыми структурами и стратегическим предвидением.

    Уменьшение  зависимости энергопотребителей от централизованных энергосетей и  энергетических монополистов станет важнейшей особенностью энергетики XXI века.

    Возможности новых технологий очень широки —  достаточно проследить путь, пройденный за два десятилетия компьютерной отраслью (от производства громоздких электронно-вычислительных и допотопных счетно-решающих машин до компактных карманных ноутбуков).

    Если XX век можно назвать «нефтяным», то XXI век реально может стать эрой водородной энергетики. Ученые считают, что открытие дешевого и эффективного способа электролиза воды могло бы превратить водород в господствующий энергоноситель в недалеком будущем. Так, большие перспективы открываются у топливных элементов. Топливные элементы сегодня применяются в легковых автомобилях, автобусах, больницах, на военных базах, предприятиях по переработке промышленных стоков, разрабатываются они и для сотовых телефонов, ноутбуков. Использование малогабаритных топливных элементов и других альтернативных возобновляемых автономных источников энергии позволит децентрализировать энергосистему, сократить расстояние между источником энергии и ее потребителем.

    Альтернативная энергия, как то ветроустановки, как и солнечные электростанции, особенно эффективны в небольших поселениях, для автономных энергопотребителей, отдаленных от централизованных систем энергоснабжения. Для них энергия ветра и Солнца является самым экономичным источником электричества. Характерен в этом отношении пример Дании, разбросанной на многочисленных островах, которые трудно объединить централизованной энергосистемой. Сегодня здесь насчитывается свыше 4 тысяч ветроустановок, на которые приходится около 5% всей вырабатываемой в стране электроэнергии. Заметим, что энергии не только самой экологически чистой, но и дешевой. Если в начале 1990-х гг. 1 кВт ч ее стоил одну шведскую крону, то теперь — в 4 раза дешевле. Это значительно меньше аналогичного показателя для АЭС и угольных ТЭС, и даже конкурентоспособной дешевой шведской гидроэнергии. Датские ветроустановки пользуются большим спросом — свыше половины мирового спроса на них удовлетворяется датскими фирмами и их лицензиатами. Это явилось результатом стратегического предвидения государства, восприимчивого к нововведениям и к стратегическому партнерству с промышленностью, что позволяло Дании занять выгодные позиции в преддверии новой постиндустриальной эры.

    Система ветроустановок в Дании

      
 
 
 

    Россия обладает колоссальным суммарным потенциалом энергии ветра. Вдоль берегов Северного Ледовитого океана на протяжении 12 тыс. км господствуют ветры со среднегодовой скоростью свыше 5-7 м/с. Считается, что ветроустановки эффективны при среднегодовых скоростях ветра выше 4-5 м/с. Суммарная мощность ветра на Севере достигает 45 млрд. кВт. Успешно работают ветроэлектростанции на Новой Земле, в Амдерме, на мысе Уэлен, на островах Врангеля, Шмидта, Командорах (остров Беринга). Ветроустановки успешно заменяют на Севере малые дизельные электростанции, для работы которых необходимо завозить дорогостоящее (иногда импортное) топливо. Только доставка топлива к дизельным электростанциям, расположенным на Севере Канады, обходится вдвое дороже его самого.

    Все шире используется на Севере и энергия приливов. В России на северном побережье Кольского полуострова построена Кислогубская приливная электростанция (ПЭС). Опыт эксплуатации этой станции позволил разработать новое проектное решение для строительства ПЭС на Кольском полуострове мощностью до 40 тыс. кВт.

    Проект  ПЭС на Кольском полуострове

    

 

    В Тургурском и Пенжинском заливах  Охотского моря, в районе Шантарских островов (здесь приливы достигают 13 м), перспективно строительство приливных  электростанций мощностью от 7 до 25 млн. кВт.

    В Канаде, Швеции, Норвегии, Финляндии, на Аляске все более широкое применение, помимо малых гидроэлектростанций, находят солнечные электростанции. В 2000 г. доля солнечной энергии в энергоснабжении Канадского Севера достигла 5%. Повышение эффективности солнечных элементов и качества материалов позволило за два последних десятилетия снизить на 80% затраты на их сооружение. Сейчас солнечные элементы встраивают в кровельную черепицу, керамические плитки и оконные стекла, что позволяет получать электричество и в отдельных зданиях.

    Суммарная мощность солнечных батарей возросла в мире со 150 МВт в 1985 г. до 900 МВт к 1999 г. Опыт работы солнечных электростанций показал, что в условиях длительного полярного дня большую пользу приносит не только пассивное использование солнечной энергии (зеркальные веранды, усиленная теплоизоляция), но и пассивные системы теплоснабжения (солнечные коллекторы с водой или с другим аккумулятором тепла). Не потеряли своего значения и активные системы фотоэлементов, функционирующих также и при облачной погоде.

    За  прошлое столетие люди научились  использовать перегретый пар вулканических областей для получения дешевой геотермальной электроэнергии. Еще в 1970-е годы белорусский академик Герасим Богомолов предлагал использовать тепло подземных вод. Но тогда эту идею «списали», потому что стоимость нефтепродуктов была очень низкой. Стакан бензина стоил дешевле стакана газировки. Теперь отечественные ученые советуют обратить внимание на энергию подземных вод.

    Интерес к этому виду энергии резко возрос в последнее время, когда появилась угроза т.н. «энергетического голода». Хотя в последние годы наметилась тенденция к сокращению использования геотермальной энергии. Мощности ГеоТЭС в мире к концу 1990-х гг. сократились более чем вдвое — всего до 3.6 млн. кВт. Причина снижения интереса к геотермальным источникам энергии — трудности в эксплуатации станций, их негативное воздействие на окружающую среду и возрастающая стоимость 1 кВт установленной мощности. К тому же геотермальная энергетика не мобильна, она территориально привязана к источникам, находящимся порой в труднодоступных, малоосвоенных, преимущественно горных районах (за исключением, пожалуй, Исландии). Еще одна сложность использования геотермальных вод – их высокая минерализация. В отдельных местах она достигает 400 граммов на литр. Из-за этого может наступить закупоривание скважин.

    Зарубежный  опыт показывает, что затраты на строительство геотермальных ЭС сначала получаются больше. Однако поскольку эта энергия «дармовая», предлагаемая нам самой природой и к тому же возобновляемая, отопление потом становится дешевле в два раза. Для обеспечения экологической чистоты в технологической схеме ГеоЭС предусмотрены система закачки конденсата и сепарата обратно в земные пласты, а также системы снеготаяния и предотвращения выбросов сероводорода в атмосферу.

      По мнению российских ученых, большой прогресс по удешевлению  и уменьшению эксплуатационных  издержек будет достигнут применением  в геотермальных турбинах верхнего выхлопа отвода пара. Тем не менее геотермальные ресурсы перспективны в использование в северных районах России. Геотермальные станции используют энергию горячего пара или воды, получаемых из недр Земли.

      Этот вид возобновляемой энергии  широко используется в мире. Артезианские бассейны термальных вод выявлены в Саяно-Байкальской горной системе, в Бурятии (здесь насчитывается около 400 термальных источников), в Якутии, на севере Западной Сибири, Чукотке (здесь известны 13 высокотермальных источников с суммарным дебитом 166 л/с). Самый «горячий» район — Курило-Камчатский вулканический пояс. На Камчатке выявлено 70 групп термальных источников, 40 из них имеют температуру около 100°С. Только наиболее крупные источники дают столько тепла, сколько можно получить от сжигания 200 тыс., то есть себестоимость получения 4.2 ГДж тепла в системах геотермального теплоснабжения Камчатки в 10 раз ниже, чем в котельных Петропавловска-Камчатского.

Информация о работе Альтернативные виды энергии и их использование