Автор работы: Пользователь скрыл имя, 16 Декабря 2014 в 18:38, реферат
Одно из серьезных препятствий к реализации многих звездных проектов состоит в том, что из-за громадных размеров и веса корабли невозможно построить на Земле. Некоторые ученые предлагают собирать их в открытом космосе, где благодаря невесомости астронавты смогут легко поднимать и ворочать невероятно тяжелые предметы. Но сегодня критики справедливо указывают на запредельную стоимость космической сборки
Введение
Одно из серьезных препятствий к реализации многих звездных проектов состоит в том, что из-за громадных размеров и веса корабли невозможно построить на Земле. Некоторые ученые предлагают собирать их в открытом космосе, где благодаря невесомости астронавты смогут легко поднимать и ворочать невероятно тяжелые предметы. Но сегодня критики справедливо указывают на запредельную стоимость космической сборки. К примеру, для полной сборки Международной космической станции потребуется около 50 запусков шаттла, а ее стоимость с учетом этих полетов приближается к 100 млрд долл. Это самый дорогой научный проект в истории, но строительство в открытом космосе межзвездного космического парусника или корабля с прямоточной воронкой обошлось бы во много раз дороже.
Один из способов кардинально сократить в будущем стоимость полетов — построить космический лифт. Идея забраться на небо по веревке не нова — взять хотя бы сказку «Джек и бобовое зернышко»; сказка сказкой, но если вывести конец веревки в космос, идея вполне могла бы воплотиться в реальность. В этом случае центробежной силы вращения Земли оказалось бы достаточно, чтобы нейтрализовать силу тяжести, и веревка никогда не упала бы на землю. Она волшебным образом поднималась бы вертикально вверх и исчезала в облаках. Держать веревку не потребуется, вращения Земли будет достаточно. Теоретически человек мог бы залезть по такой веревке и подняться прямо в космос. Иногда мы просим студентов-физиков рассчитать натяжение такой веревки. Несложно показать, что такого натяжения не выдержит даже стальной трос; именно поэтому долгое время считалось, что космический лифт реализовать невозможно.
Космический лифт
Идею космического лифта впервые описал в своих трудах русский учёный – Константин Циолковский. В 1895 г. он предложил возвести сооружение, получившее в последствие имя «Башня Циолковского». Проект предполагал строительство башни от поверхности Земли до точки позади геостационарной орбиты. Тележка с грузом, двигаясь вверх, сможет доставить на орбиту груз. Так как Земля обладает собственным вращением, достаточно подняться на геосинхронную орбиту, чтобы получить первую космическую скорость.
Космический лифт – это лента, один конец которой присоединен к поверхности Земли, а другой находится на геосинхронизированной орбите в космосе (на высоте 100 000 км). Гравитационное притяжение нижнего конца ленты компенсируется силой, вызванной центростремительным ускорением верхнего конца. Таким образом, лента постоянно находится в натянутом состоянии. Изменяя длину ленты, можно достигать разных орбит. Космическая капсула, содержащая полезный груз, будет передвигаться вдоль ленты.
Для начального старта капсулы потребуется усилие, но, как только она будет приближаться к станции, ее скорость будет увеличиваться из-за центростремительного ускорения всей системы. На конечной станции, если это необходимо, капсула отсоединяется от лифта и выходит в открытый космос. Скорость капсулы при этом будет составлять 11 км/с. Этой скорости будет достаточно для того, чтобы начать путешествие к Марсу и другим планетам. Таким образом, затраты на пуск капсулы будут только в начале ее пути на орбиту. Спуск будет производиться в обратном порядке – в конце спуска капсулу будет ускорять гравитационное поле Земли.
Можно использовать космический лифт в качестве «пусковой платформы» для космических кораблей, запускаемых к другим планетам, спутникам и астероидам (Марсу, Венере, Луне). Это поможет сократить расходы, связанные с традиционным запуском химических ракет. Также можно построить лифт грузоподъемностью до 100 тонн, что позволит строить на орбите большие колонии и орбитальные станции. Если бы не быстрое развитие нанотехнологий и открытие нанотрубок, концепция космического лифта не продвинулась бы дальше научной фантастики.
Однослойные углеродные нанотрубки, изобретенные в 1991 году, достаточно прочны для того, чтобы служить основой ленты лифта. Они прочнее стали в 100 раз. Теоретически, они в 3-5 раз прочнее, чем надо для постройки лифта. Нанотрубки характеризуются высокой жесткостью, и поэтому материалы на их основе могут вытеснить большинство современных аэроконструкционных материалов. Композиты на основе нанотрубок позволят уменьшить вес современных космических аппаратов почти вдвое.
Правда, самые длинные нанотрубки, которые удалось изготовить, имеют длину в несколько сантиметров. А это даже не километр, не говоря уже о 100 тыс. километрах. Но совсем нет необходимости делать всю ленту длиной 100 тыс. км из цельных нанотрубок. Отдельные фракции, состоящие из нанотрубок длиной до 2 см, будут иметь такую же прочность на разрыв, как и длинные. Однако исследователи еще только пытаются найти методы соединения фракций в более длинные полосы без потери прочности. Как они утверждают, лента будет представлять собой полимерную структуру с включениями нанотрубок, и первые успехи в области сверхпрочных материалов из нанотрубок уже достигнуты.
Две различные команды исследователей из США и Австралии создали прозрачную ткань, состоящую из нанотрубок длиной 1 м и шириной 5 см. Ранее ученым удавалось получить нанотрубки длиной только несколько сантиметров. Как и ожидалось, лента обладает высокой прочностью. Соотношение прочность/вес материала ленты выше, чем у стали высокой закалки. При этом ткань можно оборудовать органическими светодиодами, превратив ее в гибкий сверхтвердый экран. Естественно, что после ознакомления с этим проектом у ученых возникли сомнительные вопросы.
Большей частью исследователи полагают, что это сделает Земля. Но они предусмотрели тяжелые «якоря» на обоих концах лифта для того, чтобы увеличить инерцию системы и, таким образом, держать ее в равновесии. Однако, что случится, если порвется лента? Начнем с того, что спроектированная лента будет вдвое жестче, чем это необходимо. Погодные условия в месте, выбранном для расположения космического лифта, будут исключать возможность ураганов и молний. Скорее всего, станция лифта будет расположена в океане. Но если лента порвется, большая часть ленты улетит в космическое пространство, причем некоторая ее часть сгорит от высокой скорости полета в атмосфере. Нижняя часть ленты упадет в океан. При падении с высоты, лента не разовьет большей скорости, чем раскрытая падающая газета.
Посторонний наблюдатель увидит, скорее всего, только яркую полоску через все небо (от сгоревшей ленты), и все. Конечно, куски ленты будут долго находиться во взвешенном состоянии в воздухе. Наибольшую опасность представляют собой транспортируемые грузы, потерявшие связь с лифтом. Грузы, достигшие орбит, останутся на орбитах. Те грузы, которые только начали движение упадут вниз. Некоторые из грузов, достигшие скорости 11 км/с вылетят в открытый космос. Будет ли лента длиной 100 000 км представлять собой электрическую угрозу? Когда идет гроза и перемещение зарядов затрагивает большие дистанции, есть возможность того, что молния повредит ленту лифта, но конструкторы постараются так выбрать место расположения базовой станции, чтобы исключить возможность грозы.
Базовая станция будет расположена на корабле, поэтому лифт будет обладать «мобильностью» и сможет, при необходимости, передвинуться, избегая шторма. Лента неподвижна по отношению к магнитному полю Земли, и электрический ток, производимый в ленте, будет очень мал, поэтому этой опасностью тоже можно пренебречь. Как планирует американская компания, космический лифт будет построен, опробован и запущен в работу через 15 лет, с шестого года по десятый будет разрабатываться конструкция лифта, и, наконец, в оставшиеся годы будет проходить непосредственно постройка.
Размещено на Allbest.ru
Заключение
Безусловно, работающий космический лифт способен резко изменить космическую программу, но и у него есть свои недостатки. Так, траектория движения спутников по околоземной орбите постоянно сдвигается относительно Земли (потому что Земля под ними вращается). Это означает, что со временем любой из спутников может столкнуться с космическим лифтом на скорости 8 км/с; этого будет более чем достаточно, чтобы порвать трос. Для предотвращения подобной катастрофы в будущем придется либо предусматривать на каждом спутнике небольшие ракеты, которые дали бы ему возможность обойти лифт, либо снабдить сам трос небольшими ракетами, чтобы он мог уходить с траектории спутников.
Кроме того, проблемой могут стать столкновения с микрометеоритами — ведь космический лифт поднимется далеко за пределы земной атмосферы, которая в большинстве случаев защищает нас от метеоров. Поскольку предсказать подобные столкновения невозможно, космический лифт придется снабдить дополнительной защитой и, возможно, даже отказоустойчивыми резервными системами. Проблему могут представлять собой и такие атмосферные явления, как ураганы, приливные волны и штормы.
Список литературы:
1. www.galspace.spb.ru
2. www.nkj.ru журнал «Наука и жизнь»
3. www.wikipedia.org Википедия - свободная энциклопедия
4. www.nanorf.ru Журнал Российские нанотехнологии
5. www.rusnano.com Российская корпорация нанотехнологий
6. www.nanonews.net
7. «ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ
НАНОТЕХНОЛОГИЙ В АВИАЦИОННО-