Конструкция самолётов

Автор работы: Пользователь скрыл имя, 06 Октября 2013 в 06:12, контрольная работа

Краткое описание

Крыло - несущая поверхность самолета, предназначенная для создания аэродинамической подъемной силы, необходимой для обеспечения полета и маневров самолета на всех режимах, предусмотренных тактико-техническими требованиями (ТТТ). Крыло обеспечивает поперечную устойчивость и управляемость самолета (относительно продольной оси ОХ) и может быть использовано для крепления шасси, двигателей, размещения топлива, вооружения и т.п.

Прикрепленные файлы: 1 файл

Тема №3.doc

— 5.91 Мб (Скачать документ)

Недостаточная жесткость при кручении стабилизатора, обусловленная спецификой его крепления, требует применения эффективных  мер для повышения критической  скорости флаттера. С этой целью  на концах половин стабилизатора  устанавливают балансировочные (противофлаттерные) грузы, возможно применение специальных демпферов. Иногда часть концевой поверхности оперения (киля, управляемого стабилизатора) срезают. Несущие свойства этой части оперения невысоки, поэтому эффективность его практически не снижается. Вместе с тем центры тяжести концевых сечений оперения смещаются вперед, благодаря чему уменьшается потребный вес противофлаттерного груза, критическая скорость флаттера повышается.

Наличие гидроусилителя в системе управления стабилизатором может приводить к образованию еще более сложных колебательных систем, в которых наряду с оперением и фюзеляжем участвует и гидравлический привод.

 

Бафтинг

 

Бафтинг представляет собой  колебания элементов конструкции, обусловленные быстро изменяющимися аэродинамическими силами, вызванными срывным обтеканием впереди лежащих частей самолета. Срыв потока может происходить с крыла при полете на больших углах атаки (см. рис. 7.4.), с различных надстроек на фюзеляже, с подвесок, расположенных на крыле и в местах соединения крыла с фюзеляжем. Причиной бафтинга может быть выпущенное шасси, открытый в полете грузовой люк и пр.

 

Срыв потока может  наступать на околозвуковых скоростях  полета вследствие образования ударной  волны и отрыва пограничного слоя с поверхности крыла. Это так называемый скоростной бафтинг. Наиболее часто встречается бафтинг хвостового оперения, который внешне воспринимается как периодические удары по оперению. Спектр частот пульсирующих нагрузок, действующих на оперение, находящееся в вихревом потоке за крылом, весьма широк, и, следовательно, колебания могут возникнуть на частоте, близкой к частоте собственных колебаний конструкции (резонанс). Срыв потока вызывает вибрации деталей, на которых нарушается плавность обтекания, и тех деталей, на которые попадает поток, "засоренный" срывными вихрями.

Под воздействием срыва  потока с крыла может возникнуть, например, бафтинг горизонтального  оперения. При этом оперение начинает вибрировать и амплитуды его  колебаний быстро нарастают. Разрушение конструкции при бафтинге может происходить по истечении некоторого времени - вследствие явления усталости, а может происходить очень быстро (если энергия возбуждающих сил велика). Кроме того, затенение хвостового оперения приводит к потере эффективности руля высоты, что сказывается на управлении самолетом.

Так как основной причиной бафтинга являются срывы потока при обтекании отдельных частей самолета, то борьба с ним ведется, главным образом, путем улучшения  аэродинамических форм самолета, снижения интерференции в местах стыковки его агрегатов. В отдельных случаях положительные результаты были достигнуты за счет выноса горизонтального оперения из зоны спутной струи или повышения изгибной жесткости оперения и фюзеляжа. Последняя мера, однако, связана со значительным увеличением веса конструкции. В ряде случаев полностью устранить бафтинг практически не удается. Поэтому для таких самолетов вводят ограничения на некоторых режимах полета, например ограничения по скоростному напору при полете с внешними подвесками, с открытыми грузовыми люками и др.

 

Дивергенция несущих  поверхностей

 

Рассмотрим  прямое крыло, у которого линия центров  давлений расположена впереди оси  жесткости. В потоке воздуха при  положительном угле атаки на крыле  создается подъемная сила, момент от которой закручивает его в сторону увеличения угла атаки (см. рис. 7.5.). Такая деформация приводит к росту подъемной силы и дальнейшему увеличению угла атаки и так до тех пор, пока упругий момент, соответствующий кручению крыла, не уравновесит момент аэродинамических сил. В некоторых условиях равновесие крыла оказывается невозможным и оно под воздействием нагрузки апериодически отклоняется от положения равновесия. Явление статической неустойчивости конструкции в потоке воздуха принято называть дивергенцией, или перекручиванием, крыла, а скорость полета, при превышении которой равновесие между упругими и аэродинамическими моментами конструкции невозможно, - критической скоростью дивергенции.

На всех высотах критическая  скорость дивергенции должна удовлетворять условию Vкp.див > 1,2Vmax.max.

Критическая скорость дивергенции  возрастает с увеличением жесткости  крыла при кручении.

Для современных  конструкций крыльев критическая  скорость дивергенции обычно значительно  превышает максимальную скорость полёта. Объясняется это тем, что обеспечение жесткости крыла из условия предотвращения других явлений аэpоупpугости оказалось достаточным для полного исключения дивергенции.

 

Потеря эффективности  и реверс элеронов

 

Рис. 7.6. Потеря эффективности  элеронов

При отклонении элеронов на консолях крыла создаются дополнительные подъемные силы: направленная вверх на половине крыла с опущенным элероном и вниз на половине крыла с элероном, отклоненным вверх. Это приводит к нарушению равновесия самолета относительно оси Х, возникновению кренящего момента в сторону крыла с поднятым элероном. Под эффективностью элеронов обычно понимают реакцию самолета на их отклонение. Если при отклонении элеронов угловая скорость крена нарастает быстро, элероны эффективны. Если самолет вяло реагирует на отклонение элеронов, то эффек-тивность их низка. Реверс элеронов - это обратное действие элеронов, т.е. явление, при котором движение крена происходит в сторону крыла с опущенным элероном. Потеря эффективности элеронов и реверс элеронов связаны с возникновением демпфирующих моментов на крыле, противодействующих движению крена, и с упругостью конструкции, обуславливающей такие деформации крыла, при которых происходит падение кренящего момента и даже изменение его знака. Демпфирующие моменты обусловлены рядом причин. Одна из них заключается в том, что при движении крена у опускающегося крыла угол атаки увеличивается, а у поднимающегося - уменьшается. В результате возникают дополнительные силы, которые противодействуют движению крена. Если самолет имеет стреловидное или треугольное крыло, то при положительном угле атаки опускающееся крыло уходит вперед по отношению к поднимающемуся, вследствие чего появляется скольжение на опускающееся крыло и на устойчивом в поперечном отношении самолете возникает момент, противодействующий крену. При отклонении элеронов на участках крыла, занятых элеронами, возникает дополнительная нагрузка (см. рис. 7.6.). Упругое крыло от этой нагрузки дополнительно деформируется - изгибается и закручивается. Так как элероны расположены у задней кромки крыла, то крыло с опущенным элероном закручивается на уменьшение углов атаки сечений, а с поднятым элероном - на увеличение углов атаки. Чем больше приращение подъемной силы вследствие деформации крыла, тем меньше силы на крыле, обусловленные отклонением элеронов, и ниже эффективность последних.

Величина приращения подъемной силы, вызванная деформацией  крыла, растет с увеличением скоростного  напора, а величина приращения подъемной  силы, обусловленная отклонением  элеронов, от скоростного напора практически не зависит. В результате с ростом скоростного напора разность между этими величинами уменьшается и при некотором его значении становится равной нулю. Элероны при этом полностью неэффективны. Скорость полета, соответствующую полной потере эффективности элеронов, называют критической скоростью реверса элеронов.

Элероны, расположенные  в средней, более жесткой части  крыла, в меньшей степени влияют на деформации крыла и поэтому  сохраняют свою эффективность до больших чисел М полета. Такое  расположение элеронов применяется довольно часто, хотя это и ведет к уменьшению площади крыла, занятой взлетно-посадочной механизацией.

На оперении, выполненном  по схеме стабилизатор - руль, может  иметь место реверс рулей. Суть его  подобна реверсу элеронов. При отклонении рулей изменяется нагрузка главным образом в хвостовой части профиля. Это вызывает такое закручивание стабилизатора, при котором прирост подъемной силы оперения уменьшается. На всех высотах полёта критическая скорость реверса органов управления должна удовлетворять следующим условиям:

Vкp.pев > 1,2Vmax.max при Vmax.max < 600 км/ч;

 

Vкp.pев > Vmax.max + 100 км/ч  при Vmax.max > 600 км/ч.

"Всплывание" элеронов 

 

"Всплыванием" элеронов  принято называть одновременное  отклонение элеронов в одну  сторону при попадании самолета в порыв ветра. Возможность "всплывания" объясняется упругостью проводки управления и наличием в ней люфтов.

Отклонения элеронов за счет "всплывания" могут составлять 4 -5 град.

Одновременное отклонение элеронов вверх приводит к появлению кабрирующего момента. Если крыло прямое, момент, как правило, невелик и легко парируется отклонением рулей высоты. У самолета со стреловидным крылом момент на кабрирование может получаться значительным. Это может привести к выходу самолета не недопустимо большие углы атаки.

"Всплывание" элеронов  может произойти также из-за  температурных деформаций конструкции  крыла и проводки управления. Уменьшение влияния "всплывания" элеронов на характеристики устойчивости  и управляемости самолета можно  обеспечить, увеличивая жесткость проводки управления, снижая величины шарнирных моментов или же принимая меры, направленные на уменьшение кабрирующего момента. Для уменьшения кабрирующего момента элероны располагают в средней части стреловидного крыла или выполняют каждый из двух секций: внутренней, которая работает в течение всего полета, и внешней, которая вступает в работу лишь на взлете и посадке.

 

10. Нормы лётной годности: назначение, разделы; основные сведения, содержащиеся в разделе 4 («Прочность  воздушного судна»).

 

Нормы летной годности (НЛГ) - свод государственных требований к лётной годности (ЛГ) гражданских летательных аппаратов, направленных на обеспечение безопасности полётов. Учитывая, что безопасность полёта обеспечивается авиационной транспортной системой (АТС), составной частью которой является летательный аппарат, соответствие типа летательного аппарата Нормам свидетельствует о том, что его конструкция и характеристики удовлетворяют предъявляемым требованиям к безопасности полёта. Следовательно, лётная годность летательного аппарат определяется его способностью совершать безопасный полёт во всём диапазоне установленных для него ожидаемых условий эксплуатации (при условии, что остальные компоненты АТС функционируют нормально). В России выполнение требований НЛГ обязательно при проектировании, производстве, испытаниях, сертификации, допуске к эксплуатации, ремонте, экспорте и импорте гражданской авиатехники, а также при разработке государственных и отраслевых стандартов, технических требований и заданий. Контроль за выполнением НЛГ осуществляется авиационными регистрами. Отступления от отдельных требований НЛГ допускаются, если их невыполнение компенсируется другими мерами, обеспечивающими эквивалентный уровень безопасности.

Существуют  международные стандарты лётной годности и национальные НЛГ. Международные стандарты и рекомендации ЛГ разработаны Международной организацией гражданской авиации и впервые опубликованы в 1949 в качестве Приложения 8 к Чикагской конвенции 1944. Приложение 8 включает стандарты ЛГ широкого плана и служит международной (обязательной) основой для разработки национальных НЛГ, которые обязано иметь каждое государство — член Международной организации гражданской авиации. Для содействия государствам в применении Приложения 8 и разработке национальных норм Международной организации гражданской авиации издало руководящий материал — Техническое руководство по ЛГ (ТРЛГ, 1974). ТРЛГ содержит подробные требования к ЛГ, которые Международная организация гражданской авиации рекомендует использовать при разработке национальных НЛГ.

Страны - члены Международной организации гражданской авиации имеют свои национальные НЛГ или распространяют на свою гражданскую авиатехнику действие НЛГ одной из передовых авиационных держав. Наибольшим авторитетом среди зарубежных НЛГ пользуются нормы США - Federal Aviation Regular (FAR) и Великобритании - British Civil Airworthiness Requirements (BCAR), разработка и постоянное совершенствование которых ведётся с 30-х гг. Начиная с 70-х гг. осуществляется разработка западноевропейских НЛГ, в создании которых участвуют страны Общего рынка. Первое издание этих норм — Joint Airworthiness Requirements (JAR) выпущено в 1974. За основу их приняты нормы США. В отдельных разделах используются нормы Великобритании.

В СССР НЛГ гражданских самолётов (НЛГС) впервые изданы в 1967. НЛГС в основном соответствовали требованиям Международной организации гражданской авиации и учитывали FAR и BCAR. В 1971 были изданы изменения к НЛГС и НЛГ вертолётов СССР (НЛГВ). Но широкого распространения эти НЛГС и НЛГВ не получили ввиду отсутствия в то время в СССР системы совершенствования НЛГ и сертификации. В 1971 под руководством Министерства авиационной промышленности СССР была создана Междуведомственная комиссия по НЛГ гражданских летательных аппаратов СССР (МВК НЛГ СССР), которой поручили осуществлять руководство и координацию работ по постоянному совершенствованию отечественных НЛГ с учётом достижений авиационной науки и техники, опыта эксплуатации летательных аппаратов и зарубежного опыта.

В 1972 был выпущен ряд существенных изменений к НЛГС (НЛГС-1), учитывающих новые требования Международной организации гражданской авиации. В 1974 были введены в действие нормы — НЛГС-2, которые полностью соответствовали требованиям Международной организации гражданской авиации и устанавливали уровень ЛГ, аналогичный уровню НЛГ США и Великобритании тех лет. В 1975 на основе НЛГС-2 с учётом специфики сверхзвуковых летательных аппаратов были разработаны и введены в действие Временные нормы лётной годности сверхзвуковых гражданских самолётов СССР (ВНЛГСС). На основе накопленного опыта применения НЛГС-2 разработаны и введены в действие нормы лётной годности для гражданских транспортных самолётов НЛГС-3 (1984) и нормы для вертолётов НЛГВ-2 (1987). НЛГС-3 соответствуют требованиям Международной организации гражданской авиации и устанавливают уровень ЛГ, аналогичный уровню ЛГ, предусмотренному FAR и JAR.

Для унифицированного подхода  к оценке соответствия летательного аппарат требованиям НЛГ разработаны  Методы определения соответствия применительно к НЛГС-2 и НЛГС-3, включающие комплекс методов расчётов, моделирования, стендовых и лётных испытаний, на основе которых производится оценка соответствия характеристик летательного аппарата, его двигателей и оборудования требованиям НЛГ.

В отечественных НЛГС-3 предусматривается сочетание количественных и качественных требований к характеристикам  и конструкции летательного аппарата, его двигателей, оборудования, а  также к методам пилотирования, относящихся к безопасности полёта, и требований, устанавливающих допустимые вероятности возникновения в полёте особых ситуаций различной степени опасности из-за отказов функциональных систем. Выполнение требований ЛГ должно быть подтверждено во всём диапазоне ожидаемых условий эксплуатации. Такая система требований позволяет определить пределы эксплуатационной области полёта, в которой должен обеспечиваться установленный нормами уровень ЛГ, и защитить летательный аппарат от выхода на критические (опасные) режимы и условия полёта. НЛГС-3 состоят из глав, построенных по тематическому признаку, и Приложения П8 (Технические требования к оборудованию летательных аппаратов), которое издано отдельной книгой.

Информация о работе Конструкция самолётов