Звезды и их эволюция

Автор работы: Пользователь скрыл имя, 18 Октября 2012 в 16:51, реферат

Краткое описание

Что такое звезды? Поверхностный взгляд найдет сходство между звездами и планетами. Ведь и планеты при наблюдении простым глазом видны как светящиеся точки различной яркости.

Содержание

Введение……………………………………………………………………3
1 Звезда – плазменный шар. Межзвездная среда………………………..5
2 Основные звездные характеристики…………………………………....9
3 Понятие эволюция звезд………………………………………………..13
4 Процесс звездообразования, стадия гравитационного сжатия……....15
5 Звезда как динамическая саморегулирующаяся система…………….18
6 Поздние годы и гибель звезд…………………………………………...20
Заключение………………………………………………………………..23
Список используемой литературы……………………………………….24

Прикрепленные файлы: 1 файл

реферант звезды и их эволюция.doc

— 101.00 Кб (Скачать документ)

   - постоянная Больцмана

Мощность излучения  всей поверхности звезды, или ее светимость, очевидно будет равна

   ( * ), где R - радиус звезды. Таким образом, для определения радиуса звезды надо знать ее светимость и температуру поверхности.

Нам остается определить еще одну, едва ли не самую важную характеристику звезды - ее массу. Надо сказать, что это сделать не так  то просто. А главное существует не так уж много звезд, для которых имеются надежные определения их масс. Последние легче всего определить, если звезды образуют двойную систему, для которой большая полуось орбиты а и период обращения Р известны. В этом случае массы определяются из третьего закона Кеплера, который может быть записан в следующем виде:

  , здесь М1 и М2 - массы  компонент системы, G - постоянная  в законе всемирного тяготения  Ньютона. Уравнение дает сумму  масс компонент системы. Если к тому же известно отношение орбитальных скоростей, то их массы можно определить отдельно. К сожалению, только для сравнительно небольшого количества двойных систем можно таким образом определить массу каждой из звезд.

В сущности, говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы  (то есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. В такой ситуации астрономы молчаливо принимаю, что звезды с одинаковой светимостью и цветом имеют одинаковые массы.

 

3 Понятие эволюции звезд

Эволюция звезд - изменение  физических характеристик, внутреннего строения и химического состава звезд со временем. Важнейшие задачи теории эволюции звезд - объяснение образования звезд, изменения их наблюдаемых характеристик, исследование генетической связи различных групп звезд, анализ их конечных состояний [5 с.397].

Поскольку в известной  нам части Вселенной около 98-99% массы наблюдаемого вещества содержится в звездах или прошло стадию звезд, объяснение эволюции звезд является одной из наиболее важных проблем астрофизики.

Звезда в стационарном состоянии - это газовый шар, который  находится в гидростатическом и  тепловом равновесии (т.е. действие сил  тяготения уравновешено внутренним давлением, а потери энергии на излучение  компенсируются энергией, выделяющейся в недрах звезды). "Рождение" звезды - это образование гидростатические равновесного объекта, излучение которого поддерживаются за счет собственных источников энергии. "Смерть" звезды - необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофическому сжатию.

Для понимания эволюции звезд принципиальное значение имеет  вопрос об источниках их энергии. Потери энергии на излучение с поверхности  могут восполняться за счет охлаждения недр, выделения гравитационной потенциальной  энергии при сжатии и ядерных реакций.

 Выделение гравитационной  энергии может играть определяющую  роль лишь тогда, когда температура  недр звезды недостаточна для  того, чтобы ядерное энерговыделение  могло компенсировать потери  энергии, и звезда в целом  или ее часть должна сжиматься для поддержания равновесия. Высвечивание тепловой энергии становится важным лишь после исчерпания запасов ядерной энергии. Таким образом, эволюцию звезд можно представить как последовательную смену источников энергии звезд.

Характерное время эволюции звезд слишком велико для того, чтобы можно было всю эволюцию проследить непосредственно.

Ход эволюции звезды зависит  в основном от ее массы и исходного  химического состава. Определенную, но не принципиальную роль могут играть вращение звезды и ее магнитное поле, однако роль этих факторов в эволюции звезд еще недостаточно исследована. Химический состав звезды зависит от времени, когда она образовалась, и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав которого определялся космологическими условиями. По-видимому, в нем было примерно 70% по массе водорода, 30% гелия и ничтожная примесь дейтерия и лития. В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием), которые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Процесс звездообразования, стадия гравитационного сжатия

Звездообразование –  это процесс рождения звезд из межзвездного газа, газопылевых образований, облаков. Процесс звездообразования  продолжается непрерывно, он происходит и в настоящее время.

Для каждого поколения звезд характерны конкретные условия звездообразования. Кроме того, первые поколения звезд образовывались в основном в области галактического центра, во всем его объеме. В дальнейшем, в связи с тем, что межзвездный газ все больше концентрировался в плоскости Галактики, звездообразование происходило и происходит сейчас в этой галактической плоскости.

Звезды образуются не в одиночку, а группами, скоплениями, что является результатом гравитационной конденсации, сжатия (коллапса) громадных  объемов межзвездного газа, газопылевых облаков. Этот процесс хорошо описывается теорией. Кроме того, имеются многочисленные наблюдательные данные рождения звезд. Их число особенно увеличилось с возникновением радио- и инфракрасной астрономии, для диапазонов которых газ и пыль прозрачны.

Звездообразование начинается со сжатия и последующей фрагментации (под действием гравитационных сил) протяженных холодных облаков молекулярного  межзвездного газа. Масса газа должна быть такой, чтобы действие сил гравитации преобладало над действием сил газового давления. При современных температурах межзвездного газа (10-30 К) его минимальная масса, которая может конденсироваться, коллапсировать, составляет не менее тысячи масс нашего Солнца. Каждый из образовавшихся фрагментов может в свою очередь разделяться на отдельные фрагменты (так называемая каскадная фрагментация). Последняя серия фрагментов и представляет собой материал, из которого непосредственно формируются звезды.

По мере сжатия в таком  фрагменте постепенно выделяются ядро и оболочка. Ядро – это центральная, более плотная и компактная часть, достигшая гидростатического равновесия. Оболочка – это внешняя, протяженная, продолжающая коллапсировать часть газопылевого фрагмента. Процесс конденсации сопровождается возрастанием магнитного поля, ростом давления газа. Долгое время оболочка остается плотной и непрозрачной, что делает рождающуюся звезду невидимой в оптическом диапазоне. Так постепенно формируются протозвезды – грандиозные непрозрачные массы межзвездного газа со сформировавшимся ядром, в которых гравитация уравновешивается силами внутреннего давления.

С образованием протозвезды  рост массы ее ядра не прекращается. Масса ядра продолжает увеличиваться за счет выпадения газа на ядро из оболочки (аккреция). Силы гравитации растут и разогревают ядро, которое претерпевает качественные изменения, в том числе возрастают его светимость и давление излучения. Затем рост ядра и конденсация газа из оболочки прекращаются. Оболочка постепенно «сдувается» излучением и рассеивается. А ядро со стороны приобретает вид звездного объекта. Этот процесс гравитационного сжатия длится относительно недолго (от сотен тысяч до нескольких десятков млн. лет) и заканчивается тогда, когда температура в центре достигает тех значений (10-15 млн. градусов), при которых включается другой источник энергии – термоядерные реакции. Сжатие при этом прекращается, и процесс звездообразования завершается: протозвезда окончательно превращается в звезду [1 c.366].

Теория звездообразования  не только описывает его общий ход, но и позволяет выделить факторы, которые могут замедлять или стимулировать звездообразование. К замедляющим факторам относятся: незначительная масса протозвезды, высокая скорость вращения газопылевого облака, сильное магнитное поле и др. Стимулирующими звездообразование процессами являются: ударные волны, порожденные вспышками сверхновых звезд; ионизационные фронты; столкновение облаков; звездный ветер (поток плазмы от горячих звезд) и др. Например, если масса протозвезды очень мала (менее 0,08 массы Солнца), то ее гравитационное сжатие происходит очень медленно, а температура в ядре никогда не достигает значений, необходимых для начала термоядерной реакции. Такие протозвезды будут сжиматься очень и очень долго (время их гравитационного сжатия превышает время жизни Галактики), постепенно превращаясь в так называемые черные карлики.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Звезда как динамическая саморегулирующаяся система.

Таким образом, источниками  энергии у большинства звезд  являются водородные термоядерные реакции в центральной зоне. В ходе этих реакций водород превращается в гелий, выделяя громадное количество энергии.

Водород – главная  составная часть космического вещества и важнейший вид ядерного горючего в звездах. Запасы его в звездах  настолько велики, что ядерные реакции могут  протекать в течение миллиардов лет. При этом, до тех пор пока в центральной зоне весь водород не выгорит, свойства звезды  изменяются мало.

В недрах звезд, при температурах более 10 млн. К и огромных плотностях, газ обладает давлением в миллиарды атмосфер. В этих условиях звезда может находиться в стационарном состоянии лишь благодаря тому, что в каждом ее слое внутреннее давление газа уравновешивается действием сил тяготения. Если внутри звезды температура по какой-либо причине повысится, то звезда должна раздуться, так как возрастает давление в ее недрах. И, наоборот, если температура внутри звезды, а значит и давление, понизится, то радиус звезды уменьшается. Такое состояние называется гидростатическим равновесием. Следовательно, стационарная звезда представляет собой плазменный шар, находящийся в состоянии гидростатического равновесия.

Стационарное состояние  звезд характеризуется еще и  тепловым равновесием, которое означает, что процессы выделения энергии  в недрах звезд, процессы теплоотвода энергии из недр к поверхности и процессы излучения энергии с поверхности должны быть сбалансированы. Если теплоотвод превысит тепловыделение, то звезда начнет сжиматься и разогреваться. Это приведет к ускорению ядерных реакций, и тепловой баланс будет вновь восстановлен. Таким образом, звезда представляет собой тонко сбалансированный «организм», она оказывается саморегулирующейся системой. Причем чем звезда больше, тем быстрее она исчерпывает свой запас энергии.

После выгорания водорода в центральной зоне звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Постепенно они перемещаются на периферию звезды. Звезда принимает гетерогенную структуру. Выгоревшее ядро начинает сжиматься, а внешняя оболочка – расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента жизнь звезды начинает клониться к закату.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Поздние годы и гибель звёзд

Превращение, «выгорание», водорода в гелий при термоядерной реакции происходит в центральных  областях звезды, в условиях высоких  температур.

В наружных областях звезды водород не «выгорает» из-за низкой температуры и низком давлении. Так как количество водорода в центральных областях звезды ограничено, рано или поздно (в зависимости от массы звезды) он практически весь «выгорит». При этом процессе масса и радиус центральной области звезды уменьшаются.

Что произойдет, когда реакция «гелий-углерод» исчерпает себя, выгорит весь гелий, а так же прекратится ядерная реакция «водород-гелий» в тонкой оболочке ядра?

Звезды с массами  до 1,4 масс Солнца, существенную часть  своей массы, образующую их наружную оболочку, "сбрасывают". Через несколько десятков тысяч лет, мгновение в космических масштабах, оболочка рассеивается и остается небольшая, очень горячая и плотная звезда. Медленно остывая, она превращается в «белого карлика» (белый – то есть очень горячий).

«Белые карлики» как  бы «вызревают» в недрах «красных гигантов». «Белые карлики», в которых весь водород выгорел и ядерные реакции прекратились, представляют собой, видимо, последний этап эволюции звезды. Постепенно остывая, они излучают все меньше и меньше энергии, светимость падает, гравитационные силы сжимают вещество. «Белые карлики» постепенно переходят в разряд «черных карликов» - холодных звезд огромной плотности и небольшого размера (порядка земного при массе порядка солнечной). Этот процесс длится сотни миллионов лет.

Так прекращает свое существование большинство звезд. Однако финал жизни звезд, массы которых превышают солнечную, может быть иным. Некоторые звезды на определенном этапе своей эволюции взрываются. В этих случаях говорят о вспышке «сверхновой».

Вспышка «сверхновой» звезды – весьма редкое явление. В больших звездных системах, подобных нашей Галактике, вспышке «сверхновых» происходят в среднем раз в сто лет.

Существует несколько  гипотез о причине взрывов  звезд, наблюдаемых как «сверхновые». Единой точки зрения нет. Возможный вариант – катастрофически быстрое выделение потенциальной энергии гравитационных сил при резком сокращении размеров ядра.

Если звезды с массой меньше 1,4 массы Солнца могут преодолеть этап эволюции от протозвезды к «красному  гиганту» и «белому карлику», то звезды, у которых масса составляет от 1,4 до 2, 5 масс Солнца, не могут перейти в устойчивое состояние «белого карлика». После сброса оболочки они катастрофически быстро сжимаются до размеров порядка 10 км. При этом скорость вращения должна резко возрасти. Теоретические расчеты показывают, что такие звезды состоят из вещества плотностью до 1015 г/см3. Это уже «плотно упакованные» нейтроны, образующие нейтронные звезды.

Информация о работе Звезды и их эволюция