Автор работы: Пользователь скрыл имя, 20 Июня 2014 в 14:48, дипломная работа
В геодезии и в земельном законодательстве Российской Федерации произошли большие и коренные изменения. Пришло время говорить в геодезии о новой геодезической науке, о спутниковых геодезических системах, а в земельном законодательстве Российской Федерации, возникла острая необходимость приведения в соответствие землеустроительные и топографо-геодезические документы. Выдвигается на первый план качественное и оперативное проведение картографо-геодезических работ с применением новейших геодезических приборов, таких как, GPS-приемник (Topcon HiPer+), программного обеспечения для обработки результатов измерения (Topcon Tools) и современных технологий для определения координат опорных геодезических пунктов.
Введение………………………………………….…….…..…….…..…..……......3
I. Аналитический обзор………………………….…….…..…………………...…4
II. Теоретическая часть
1.1. История развития GPS технологии….…………….………………...4-6
1.1.2. Принцип работы системы GPS……………….………..………..6-8
1.1.3. Состав системы GPS….….……………….….…….……..…….9-15
1.1.4. Способы наблюдения……………………………..………......15-17
1.1.5. Основные принципы работы системы ГЛОНАСС….….…...17-24
1.1.6. Состав системы ГЛОНАСС………………....….………..…...24-29
1.2. Определение координат потребителя……....……………..……...30-32
1.2.1. Сущность абсолютных определений.……..…………….…...32-33
1.2.2 Понятие о методах относительных спутниковых определений.....................................................................................................................33-39
1.2.3. Прогнозирование спутникового созвездия……………...…...39-40
1.2.4. Источники ошибок……...…………...……..…….….…….......41-44
1.3. Основные технические требования, предъявляемые к приёмникам, используемым для развития ОГС и съёмки ситуации и рельефа…………45-46
1.3.1. Порядок проверки готовности аппаратуры и исполнителей к проведению работ на объекте……...………..…………...………….…........46-47
1.3.2. Общие указания по выполнению спутниковых определений....47-48
1.3.3. Порядок производства полевых работ и общие рекомендации по вычислительной обработке результатов наблюдений спутников…….......48-55
1.4. Опорная геодезическая сеть…...………………….………..….……...55
1.4.1. Статус и назначение опорной геодезической сети…....….....56-57
1.4.2. Классификация опорной геодезической сети и ее точность…...57
1.4.3. Построение опорной геодезической сети …………...…..…..58-59
1.4.4. Геодезические системы координат и проекция….…….........60-65
1.4.5. Математическая обработка геодезических измерений…......65-66
1.4.6. Составление каталогов (списков) координат пунктов ОГС в написании технического отчета……………………………..…...…..………...66-67
1.4.7. Виды знаков опорной геодезической сети (ОГС)…......….....67-70
1.4.8. Указания по проектированию опорной геодезической сети.71-78
III. Экспериментальная часть…..………………….……..…….……...…….79-83
Заключение…………………...……………….……..………..………………….83
Список библиографических источников……….…………………..…........84-85
Графические приложения....………………...………...……………….…….86-97
Содержание
Введение………………………………………….…….….
I. Аналитический обзор………………………….…….…..………………….
II. Теоретическая часть
1.1. История развития GPS технологии….…………….………………...4-6
1.1.2. Принцип работы системы GPS……………….………..………..6-8
1.1.3. Состав системы GPS….….……………….….…….……..…….9-15
1.1.4. Способы наблюдения……………………………..………....
1.1.5. Основные принципы работы системы ГЛОНАСС….….…...17-24
1.1.6. Состав системы ГЛОНАСС………………....….………..…...
1.2. Определение координат потребителя……....……………..……...
1.2.1. Сущность абсолютных определений.……..…………….…...32-
1.2.2 Понятие о методах относительных спутниковых
определений...................
1.2.3. Прогнозирование спутникового созвездия……………...…...39-40
1.2.4. Источники ошибок……...…………...……..…….….…….
1.3. Основные технические требования, предъявляемые к приёмникам, используемым для развития ОГС и съёмки ситуации и рельефа…………45-46
1.3.1. Порядок проверки готовности аппаратуры
и исполнителей к проведению работ на
объекте……...………..…………...………….…
1.3.2. Общие указания по выполнению спутниковых определений....47-48
1.3.3. Порядок производства полевых работ и общие рекомендации по вычислительной обработке результатов наблюдений спутников…….......48-55
1.4. Опорная геодезическая сеть…...………………….………..….……...55
1.4.1. Статус и назначение опорной геодезической сети…....….....56-57
1.4.2. Классификация опорной геодезической сети и ее точность…...57
1.4.3. Построение опорной геодезической сети …………...…..…..58-59
1.4.4. Геодезические системы координат и проекция….…….........60-65
1.4.5. Математическая обработка геодезических измерений…......65-66
1.4.6. Составление каталогов (списков)
координат пунктов ОГС в написании технического
отчета……………………………..…...…..……….
1.4.7. Виды знаков опорной геодезической сети (ОГС)…......….....67-70
1.4.8. Указания по проектированию опорной геодезической сети.71-78
III. Экспериментальная часть…..………………….……..…….……...……
Заключение…………………...……………….…….
Список библиографических источников……….…………………..…......
Графические приложения....………………...………...…
Введение
В геодезии и в земельном законодательстве Российской Федерации произошли большие и коренные изменения. Пришло время говорить в геодезии о новой геодезической науке, о спутниковых геодезических системах, а в земельном законодательстве Российской Федерации, возникла острая необходимость приведения в соответствие землеустроительные и топографо-геодезические документы. Выдвигается на первый план качественное и оперативное проведение картографо-геодезических работ с применением новейших геодезических приборов, таких как, GPS-приемник (Topcon HiPer+), программного обеспечения для обработки результатов измерения (Topcon Tools) и современных технологий для определения координат опорных геодезических пунктов.
Однако без создания, а в дальнейшем модернизации опорной геодезической сети (ОГС) это практически неосуществимо в силу различных причин, главной из которых является недостаточная точность координат пунктов. ОГС населенных пунктов строились в местных системах координат (в каждом своя), зачастую без строгого уравнивания. Данную проблему можно решить с помощью GPS-технологий.
Целью данной дипломной работы является исследование метода создания опорной геодезической сети с помощью спутниковой технологии на Новомихайловском месторождении нефти и газа ..
Для достижения данной цели необходимо решить следующие задачи:
- изучить виды и назначения опорных геодезических сетей;
- изучить методику создания опорной геодезической сети с помощью спутниковой технологии;
- сделать соответствующий вывод на основе рассмотренного метода.
I. Аналитический обзор
При написании дипломной работы в качестве теоретической основы были использованы следующие источники: Ширенин А. М. «Сгущение и обновление государственной сети методами спутниковой геодезии», Ефимов Г. Н., Побединский Г. Г. «О необходимости координации работ по созданию государственной и городских геодезических сетей», «GPS. Глобальная система позиционирования» Акционерное общество «ПРИН», Назаров Н. А. «Геодезия», статьи из журнала «Геодезия и картография», Генике А. А., Побединский Г. Г., «Глобальная спутниковая система определения местоположения GPS и ее применение в геодезии», Аланд В.В., Самратов У.Д., Родионов Б.Н., Елесин Г.С. «Применеие новых методов съемок и актуальные задачи землеустройства», «Основные положения о Государственной геодезической сети» и другие источники.
В данной работе изложена технология создания и сгущения опорных геодезических сетей, сведения о системе GPS, методах и режимах спутниковых определений, методика создания опорной геодезической сети с помощью спутниковой технологии, новые понятия и актуальные задачи геодезии и картографии.
1.1 История развития GPS технологии.
Global Positioning System (GPS)
Разработка системы глобального позиционирования GPS началась в декабре 1973 года Военно-Воздушными Силами США. Разрабатываемая система спутниковой навигации была названа NAVSTAR (NAVigation Satellite providing Time And Range), что в переводе означает "навигационная спутниковая система, обеспечивающая измерение времени и местоположения".
Изначально GPS использовалась для высокоточного и независимого от погоды определения местоположения объектов в космосе, на суше и на море в интересах армии США. Непосредственная реализация системы началась в 1978 году с запуском первого спутника.
В то время уже существовали хорошо разработанные навигационные технологии. Попытки введения новой системы навигации подразумевали, помимо всего прочего, широкомасштабную переподготовку в войсках, что наталкивалось на консерватизм военных. Вначале командный состав ВВС просто отказывался применять GPS, ссылаясь на ее чрезмерную дороговизну.
Руководство военно-морского флота США также было против внедрения новой спутниковой навигационной программы, предпочитая довольствоваться существующими испытанными методиками. Благодаря коммерческому интересу гражданских разработчиков система стала стремительно совершенствоваться и развиваться. Здесь можно провести аналогию с Интернетом, который после передачи технологий коммерции довольно быстро завоевал весь мир.
С 1983 года система GPS открыта для использования в гражданских целях, в 1989 году был произведен запуск спутников нового поколения. Первые 11 спутников двигались по другой орбите по сравнению с современными спутниками и были предназначены для того, чтобы апробировать систему и показать реальность выполнения задачи. До 2000 года сигнал GPS, предназначенный для обычных пользователей, намеренно искажался, что вело к снижению точности (так называемый режим селективного доступа). Историческим стало решение президента Клинтона. Он 1 мая 2000 года специальным распоряжение отменил загрубление сигналов. Ситуация изменилась разительно. Специальные режимы работы (дифференциальный, двухчастотный, фазовые измерения) позволяют получать точность намного более высокую.
С 1991 года сняты ограничения на продажу GPS-оборудования в страны бывшего СССР. В 1993 году система была полностью развернута.
По оценкам некоторых специалистов, объем продаж устройств GPS в 2008 году превысил 3 миллиарда долларов, причем всего 90 миллионов приходились на военный сектор. В настоящее время во всем мире более двухсот фирм (в частности, Magellan Systems, Motorola, Rockwell, Honeywell, и др.) выпускают сотни тысяч устройств различных классов, использующих технологию GPS, в том числе недорогие малогабаритные приборы, которые реализуют возможность применения GPS-навигации во многих областях человеческой деятельности.
1.1.2. Принцип работы системы GPS.
Основу системы составляет сеть ИСЗ (искусственные спутники земли) развёрнутых в около земной орбите и равномерно “покрывающих” всю земную поверхность.
Орбиты ИСЗ рассчитаны с очень высокой степенью точности, поэтому в любой момент времени известны координаты каждого спутника. Радиопередатчик каждого из спутников непрерывно излучает сигналы в направлении Земли. Эти сигналы принимаются GPS-приемником, находящегосяся в некоторой точке земной поверхности, координаты которой нужно определить.
В GPS- приемнике измеряется время распространения сигнала от ИСЗ и вычисляется дальность “спутник-приемник”. Для вычисления этого расстояния пользуются тем свойством, что (радиосигнал распространяется со скоростью света). Так как для определения местоположения точки нужно знать три координаты (имеются в виду плоские координаты X, Y и высоту H), то в приемнике вычисляются расстояния до трех различных ИСЗ. Очевидно, при данном методе радионавигации (он называется без запросным) точное определение времени распространения сигнала возможно лишь при наличии синхронизации временных шкал спутника и приемника. Поэтому в состав аппаратуры ИСЗ и приемника входят эталонные часы (стандарты частоты), причем точность спутникового эталона времени исключительно высока. Бортовые часы всех ИСЗ синхронизированы и привязаны к так называемому “системному времени”. Эталон времени GPS- приемника менее точен, чтобы чрезмерно не повышать его стоимость.
На практике в измерениях времени всегда присутствует ошибка, обусловленная несовпадением шкал времени ИСЗ и приемника. По этой причине в приемнике вычисляется искаженное значение дальности до спутника или “псевдодальность”. Измерения расстояний до всех ИСЗ, с которыми в данный момент работает приемник, происходит одновременно. Следовательно, для всех измерений величину временного несоответствия можно считать постоянной. С математической точки зрения это эквивалентно тому, что неизвестными являются не только координаты X,Y и H, но и поправка часов приемника D t. Для их определения необходимо выполнить измерения псевдодальностей не до трех, а до четырех спутников. В результате обработки этих измерений в приемнике вычисляются координаты (X,Y и H) и точное время.
Если приемник установлен на движущемся объекте и наряду с псевдодальностями измеряет доплеровские сдвиги частот радиосигналов, то может быть вычислена и скорость объекта. Таким образом, для выполнения необходимых навигационных расчётов точки необходимо обеспечить постоянную видимость с нее, как минимум, четырех спутников. После полного развертывания созвездия ИСЗ в любой точке Земли могут быть видны от 5 до 12 спутников в произвольный момент времени.
Современные GPS-приемники имеют от 5 до 12 каналов, т.е. они могут одновременно принимать сигналы от 5 до 12 ИСЗ. Приём сигнала более чем от четырех спутников естественно позволяют повысить точность определения координат и обеспечить непрерывность решения навигационной задачи.
1.1.3. Состав системы GPS.
В состав системы входят:
Космический сигмент состоит из 24 спутников (21 основной и 3 запасных), которые вращаются на 6 орбитах. Плоскости орбит наклонены на угол около 55° к плоскости экватора и сдвинуты между собой на 60° по долготе. Радиусы орбит составляют около 26 тыс. километров, а период вращения составляет приблизительно половину звездных суток (примерно 11 ч. 58 мин.). На борту каждого спутника имеется 4 стандарта частоты (два цезиевых и два рубидиевых - в целях резервирования), солнечные батареи, двигатели корректировки орбит, приемо-передающая аппаратура, компьютер. Вес каждого спутника около 900 кг, размер более 5 м, включая солнечные батареи. На каждом спутнике установлены атомные часы, обеспечивающие высокую точность ( 10-9 сек. ), вычислительно кодирующее устройство и передатчики мощностью 50 Вт и 8 Вт.
В идеале в любой момент времени любая точка Земного шара находится в зоне видимости не менее трех спутников. Спутники можно "увидеть" даже на полюсах, правда они будут находиться низко над горизонтом, что влияет на точность измерений, но несущественно.
Справедливости ради стоит отметить, что есть все же "темные" области в высоких широтах, где одновременно может быть не более 2 спутников, что не позволяет определять координаты и нарушает работу приемника GPS. Однако такое положение дел длится лишь от 15 до 45 минут, в остальном система навигации GPS действительно глобальна.
Передающая аппаратура спутника излучает синусоидальные сигналы на двух несущих частотах: L1=1575,42 МГц и L2=1227,6 МГц. Перед этим сигналы модулируются так называемыми псевдослучайными цифровыми последовательностями (по-научному, эта процедура называется фазовой манипуляцией). Причем частота L1 модулируется двумя видами кодов:
1). C/A-кодом (код свободного доступа)
2). P-кодом (код санкционированного доступа)
Частота L2- только P-кодом. Кроме того, обе несущие частоты дополнительно кодируются навигационным сообщением, в котором содержатся данные об орбитах ИСЗ, информация о параметрах атмосферы, поправки системного времени.
Кодирование излучаемого спутником радиосигнала преследует несколько целей: