Высотные здания, их конструктивные решения. Архитектура Бурдж-Халифа, г. Дубаи

Автор работы: Пользователь скрыл имя, 17 Ноября 2013 в 17:15, реферат

Краткое описание

Высотные здания во всем мире относят к объектам самого высокого уровня ответственности и класса надежности. Удельная стоимость их строительства значительно выше обычных зданий. Это обусловлено не только технологическими, конструктивными и другими факторами, но в значительной степени и мерами комплексной безопасности, принимаемыми на всех стадиях – проектирования, строительства и эксплуатации. Возникновение и развитие аварийных ситуаций в высотных зданиях может иметь очень тяжелые последствия не только материального, экономического, экологического, но и социального характера.

Содержание

Введение
Общие сведения о высотных зданиях
Конструктивные решения при строительстве высотных зданий.
Несущие элементы конструктивных систем высотных зданий.
Колонны.
Стены.
Лестнично-лифтовые узлы
Междуэтажные перекрытия.
Конструктивные решения фундаментов.
Хронология рекордов высоток.
История Бурдж-Халифа
Общие сведения
Климат
Проект здания
Проектная высота
Форма небоскреба
Особенности здания
Климат
Стеклянные панели и кондиционирование
Бетонные работы
Фундамент
Способы передвижения в здании
Генплан
Техника безопасности
Рекорды, установленные строительством небоскреба……………….
Заключение……………………………………………………………………25
Библиографический список………………………………………………….26

Прикрепленные файлы: 1 файл

Архиектура.doc

— 1.70 Мб (Скачать документ)

         

Рис.6. Коробчато-ствольная  система

Высотные здания можно  разделить на диапазоны по высоте, для каждого из которых характерны свои конструктивные решения. При этом следует заметить, что границы  диапазонов в определенной степени  условны в силу перечисленных  выше обстоятельств.

Здания высотой до 200–250 м возводят преимущественно с несущим каркасом (рамный каркас, каркас с диафрагмами жесткости). При строительстве жилых домов и гостиниц применяют и перекрестно-стеновую систему, которая благодаря высокой жесткости наиболее эффективна в зданиях высотой до 150 м. Эти конструктивные системы имеют компоновочные схемы, наилучшим образом удовлетворяющие объемнопланировочным решениям и функциональному назначению объектов строительства. В связи с этим необходимо отметить, что независимо от высоты здания при разработке его объемно-планировочного решения максимально стараются придерживаться пропорций, обеспечивающих требуемую жесткость строения и ограничивающих колебания верхней части при знакопеременных горизонтальных нагрузках. Обычно отношение меньшего размера в плане к высоте здания составляет 1:7 – 1:8. При соотношениях больше указанных неоправданно увеличивается площадь застройки, а при уменьшении – заметно возрастает деформативность несущего остова, что негативно сказывается как на технико-экономических показателях, так и на пребывании людей на верхних этажах.

Увеличение высоты зданий сопровождается существенным ростом горизонтальных нагрузок, действующих на них в  процессе строительства и эксплуатации. Как уже было отмечено, при некоторых  условиях напряжения, возникающие в элементах несущего остова здания, определяются в большей степени горизонтальными усилиями. Превалирующее влияние горизонтальных нагрузок приводит к неравномерному распределению вертикальных усилий и деформаций в вертикальных несущих конструктивных элементах остова здания, его закручиванию, сдвиговым деформациям. Для повышения сопротивления внешним воздействиям несущей системы зданий высотой более 250 м применяют преимущественно ствольные конструктивные системы: “труба в трубе” и “труба в ферме”. Их компоновочная схема включает центральный ствол, воспринимающий основную долю всех нагрузок, и расположенные по периметру здания несущие элементы в виде отдельных стоек (колонн), решетчатых систем (ферм, составных стержней и др.), пилонов, которые также могут быть объединены в единую конструкцию. Жесткость ствольной системы, ее устойчивость и способность к гашению вынужденных колебаний обеспечиваются заделкой центрального ствола в фундамент.

В случаях, когда жесткости  стеновой, каркасной или ствольной системы недостаточно, прибегают к комбинированным решениям, сочетающим в себе признаки разных конструктивных решений. В частности, для повышения сопротивления несущего остова здания возрастающим с высотой над уровнем земли ветровым нагрузкам применяют комбинацию ствольной и стеновой систем. В этом случае горизонтальные нагрузки воспринимаются не только внешней оболочкой и центральным стволом, но и внутренними несущими стенами. Комбинированная конструктивная система обладает большей конструктивной гибкостью в части возможности распределения доли воспринимаемых усилий за счет варьирования жесткости несущих элементов остова.

Следует заметить, что  повышения сопротивляемости здания ветровым нагрузкам можно достигнуть не только за счет применения соответствующих конструктивных систем, но и путем придания определенной формы в плане. Многочисленные зарубежные исследования, выполненные продуванием моделей в аэродинамических трубах и компьютерной симуляцией с помощью программного обеспечения, показали, что оптимальной формой плана высотного здания является круг или фигура, близкая по форме к кругу. Эллиптическая и квадратная формы хотя и уступают круглой, но также обеспечивают достаточную сопротивляемость здания горизонтальным нагрузкам.

Говоря о предпочтительных формах планов высотных зданий, необходимо отметить, что при прочих равных условиях наилучшими показателями обладают сечения минимум с двумя осями симметрии. Такие здания менее других чувствительны к изменению направления действия горизонтальных нагрузок, а количество типоразмеров несущих конструкций сокращается до минимума. Практика свидетельствует о том, что сооружения сложной формы целесообразно проектировать составными из нескольких блоков, имеющих более простые по форме сечения.

Рис.7. Формы здания в плане

Высотное строительство  часто осуществляется в сейсмически  активных районах. Это порой приводит к противоречивым результатам влияния  жесткости каркаса на поведение  здания при ветровых и сейсмических нагрузках. Если для улучшения сопротивления ветровому напору и уменьшения амплитуды и частоты колебаний верха здания прибегают к увеличению жесткости несущего остова, то при сейсмических нагрузках такие здания не способны поглотить энергию толчков земной коры, что вызывает значительные перемещения и ускорения на верхних этажах. С уменьшением поперечной жесткости несущей системы наблюдается обратная картина – при более гибком скелете заметно ухудшаются комфортные условия на верхних этажах, испытывающих значительные колебания.

Для устранения указанных противоречий в особо высоких зданиях (до 300 м и более) на верхних этажах устраивают пассивные маятниковые демпферы. В частности, такой демпфер установлен в башне Taipei101. Он имеет вес около 800 т, подвешен с помощью тросов на 92м этаже и предназначен для гашения инерционных колебаний. В обычных условиях эксплуатации демпфер обеспечивает отклонение верха здания в пределах до 10 см, а при воздействиях катастрофического характера (тайфуны, землетрясения и т.п.) сам раскачивается с амплитудой до 150 см, гарантируя колебания здания в безопасных пределах.

Сопротивление высотного  здания совокупности вертикальных и  горизонтальных нагрузок зависит не только от очертания в плане, но и  от формы вертикального сечения  и регулярности структуры несущей  системы. В этом отношении к оптимальным очертаниям приближаются трапеция с большим нижним основанием и прямоугольник. Такие профили обладают достаточной поперечной жесткостью, особенно в сочетании с регулярной структурой несущей системы. При сооружении высотного комплекса, состоящего из нескольких объемов, последние следует соединять шарнирно, чтобы в случае воздействий чрезвычайного характера, в том числе динамических нагрузок, не передавать на соседние строения дополнительные усилия.

Несущие элементы конструктивных систем высотных зданий.

Для возведения высотных зданий применяют материалы с  особыми качествами. В первую очередь  это относится к прочности  и деформативности, поскольку именно данные показатели определяют общую  прочность остова здания и его  устойчивость к различного рода внешним воздействиям.

Современные высотные здания возводят из высокопрочного бетона и  стали, преимущественно монолитного  бетона и железобетона. Сборные железобетонные изделия находят ограниченное применение, главным образом в качестве составных элементов сборномонолитных диафрагм жесткости или несъемной опалубки вертикальных и горизонтальных несущих конструктивных элементов.

Для стеновых систем используют высокоподвижные и литые бетоны класса по прочности на сжатие В40 и  выше. Армирование стеновых конструкций выполняют арматурой класса S500.

Колонны.

Стойки каркасных систем – колонны, пилоны и другие аналогичные  элементы возводят с применением  так называемого высокопрочного и высококачественного бетона, прочность  на сжатие которого достигает 100 МПа и более. Это бетоны с заданными свойствами, определенными из условий технологии производства работ и обеспечения требований безопасности, в том числе в случае пожара. Для бетонирования элементов, густо насыщенных арматурой, применяют литые самоуплотняющиеся бетонные смеси, модифицированные химическими добавками в зависимости от технологии производства бетонных работ. Так, например, при бетонировании больших массивов, таких, как фундаменты высотных зданий, имеющие объемы до нескольких тысяч кубометров, в бетоны вводят замедлители схватывания, которые препятствуют разогреву свежеуложенного бетона за счет тепла, выделяемого при гидратации цементного камня. Ограничение температуры внутри массива необходимо для исключения образования температурно-усадочных трещин, особенно в холодный период года.

В современных небоскребах  крайне редко можно встретить  “чисто” стальные или железобетонные в традиционном понимании конструкции. Габаритные размеры колонн и количество рабочей арматуры определяются целым  рядом факторов и зависят от тех конкретных требований, которые инженер предъявляет к несущей системе здания. Варьируя прочность бетона и количество продольного армирования, можно добиться оптимизации конструктивных решений и минимизации их стоимости без снижения надежности, что для высотных зданий весьма и весьма актуально. При недостаточной несущей способности, жесткости или продольной устойчивости стоек каркаса применяют сталебетонные колонны с внешней стальной оболочкой либо с внутренней жесткой арматурой. Такие решения позволяют также повысить и огнестойкость конструкций.

Стены.

Стены высотных зданий независимо от того, несущие ли это конструкции  или диафрагмы жесткости, выполняют  из менее прочных бетонов по сравнению  с применяющимися для устройства колонн, однако, как правило, прочность бетона в стенах составляет не менее 40 МПа. В высотных зданиях несущую стеновую систему устраивают с применением монолитного бетона. Это обусловлено необходимостью придания остову максимально возможной жесткости, которую технически сложно обеспечить в сборном и сборно-монолитном варианте.

В зданиях большой  этажности особенность стеновых систем заключается в повышенной чувствительности к неравномерным  деформациям силового и усадочного характера. Эти деформации в сочетании  с традиционно небольшим процентом армирования могут привести к образованию трещин и нарушению сплошности стеновых конструкций.

В местах пересечения  или сопряжения стен разных направлений  для уменьшения влияния концентраторов напряжений в виде входящих углов  устраивают вуты (плавное увеличение поперечного сечения железобетонных опорных или перекрывающих пролёт конструкций вблизи от места опирания), которые дополнительно армируют для повышения трещиностойкости наиболее уязвимых участков конструкции. 

Наружные стены, подвергающиеся в процессе строительства и эксплуатации значительным силовым и температурно-климатическим воздействиям, проектируют с учетом конструктивных систем высотных зданий. В каркасных системах и их разновидностях с колоннами, расположенными по периметру, применяют навесные конструкции. Как правило, это легкие элементы с листовыми обшивками из стали или алюминия и средним теплоизоляционным слоем. В последнее время получили распространение навесные стеновые панели с применением закаленного и армированного стекла. Такие конструкции при требуемой по условиям эксплуатации прочности и жесткости имеют малый вес, что весьма актуально для строений, высота которых может достигать нескольких сотен метров, с точки зрения максимально возможного снижения нагрузок на несущие элементы каркаса, фундаменты и грунты основания.

В высотных зданиях с  несущим остовом на основе вариантов  стеновых систем наружные стены могут  устраиваться как с применением  навесных панелей, так и различных  фасадных систем. В последнем случае наружные стены должны иметь несущую часть, к которой эти системы крепят механически с помощью дюбелей, анкеров и др. Легкие штукатурные системы и навесные фасады традиционной конструкции применяют в относительно невысоких зданиях. Это обусловлено как величиной возникающих усилий, так и сложностью ремонта, особенно на большой высоте, в процессе эксплуатации здания. Следует отметить, что вопросы использования навесных фасадных систем и различного рода облицовок сопряжены не только с эксплуатационными качествами, но также безопасностью людей и сохранностью имущества, например автотранспорта, припаркованного вблизи здания. Падение облицовочной плитки с высоты больше ста метров может иметь эффект, аналогичный прямому попаданию пули из боевого оружия.

Говоря о конструкции наружных стен высотных зданий, необходимо упомянуть и о светопрозрачных элементах. К оконным заполнениям, воспринимающим значительные по величине статические и динамические нагрузки, предъявляют особые требования прочности, безопасности и надежности. Стеклопакеты и рамы не только должны выдерживать ветровой напор, но также обязаны не допускать возникновения низкочастотных вибраций, опасных для человеческого организма. Крепление оконных заполнений к стенам должно воспринимать многоцикловые знакопеременные нагрузки без увеличения податливости. В целях обеспечения безопасности находящихся в высотном здании и около него людей окна в верхней части делают глухими, поскольку их открывание и закрывание сопряжено не только с достаточно большими физическими усилиями и опасностью получения травм, но и повреждением или даже разрушением самой конструкции. В нижней части высотных зданий применяют окна с параллельным открыванием наружу на величину не более 10 см. При этом запорная и поворотная фурнитура рассчитана на действие ветровых нагрузок, которые, будучи обусловлены нисходящими потоками, могут достигать значительной величины и составлять до нескольких КПа.

Междуэтажные  перекрытия.

Технические решения  междуэтажных перекрытий высотных зданий отличаются большим разнообразием и зависят от конструктивной системы несущего остова, этажности здания, его габаритных размеров в плане и действующих на перекрытия вертикальных и, что особенно важно, горизонтальных нагрузок. При относительно небольшом шаге сетки колонн (до 7,2 м), а также в зданиях со стеновыми конструктивными системами применяют плоские монолитные железобетонные перекрытия. Армирование таких конструкций выполняют по направлениям силовых потоков, возникающих в дисках перекрытий от вертикальных и горизонтальных нагрузок. С увеличением шага колонн или стен конструкций прибегают к устройству несущих балок, расположенных в одном или двух направлениях.

Информация о работе Высотные здания, их конструктивные решения. Архитектура Бурдж-Халифа, г. Дубаи