Шпаргалки по "Физиологии человека и животных

Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 15:08, шпаргалка

Краткое описание

1.Понятие о регуляции, саморегуляции. Принципы гуморальной и рефлекторной регуляции функций в организме. Нейрогуморальная регуляция.
Регуляция – совокупность физиологических процессов, обеспечивающих равновесие организма со средой. В основе – взаимосвязь органов и функционирующих систем м/у собой.
Для оптимальной и стабильной работы организма необходима регуляция систем на всех уровнях – от молекулярного до популяционного. Механизмы (физиологич, биохимич, поведенч) должны соответствовать уровню организации и условиям жизни.

Содержание

1.Понятие о регуляции, саморегуляции. Принципы гуморальной и рефлекторной регуляции функций в организме. Нейрогуморальная регуляция.
2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт через мембраны, их роль в формировании мембранного потенциала покоя.
3. Современные представления о процессе возбуждения. Потенциал действия, его фазы. Ионные механизмы потенциала действия.
4. Законы раздражения возбудимых тканей. Полярный закон раздражения (Пфлюгер). Изменения мембранного потенциала под анодом и катодом постоянного тока.
5. Законы раздражения возбудимых тканей. Соотношение между силой и временем раздражения. Хронаксиметрия.
6. Законы раздражения возбудимых тканей. Адекватные и неадекватные раздражители. Порог раздражения.
7. Нервные клетки, их классификация и функции. Особенности возникновения и распространения возбуждения в афферентных нейронах.
8. Современные представления о процессе возбуждения. Местный процесс возбуждения (локальный ответ), его переход в распространяющееся возбуждение. Изменение возбудимости при возбуждении.
9. Распространение возбуждения по нервным волокнам. Классификация нервных волокон (Эрлангер и Гассер). Трофическая функция нервных клеток.
10. Физиологические свойства нервных и глиальных клеток, их взаимосвязанная деятельность. Трофическая функция нервных и глиальных клеток.
11. Функциональные свойства рецепторов. Особенности возникновения возбуждения в первичночувствующих и вторичночувствующих рецепторах.
12. Адренергические и холинергические рецепторы клеток разных органов, физиологические эффекты возбуждения этих рецепторов.
13. Рецепторный отдел сенсорных систем. Механизмы возникновения возбуждения в рецепторах. Зависимость между силой раздражения и интенсивностью ощущения (законы Вебера и Вебера-Фехнера).
14. Синапсы, особенности строения и классификация. Механизмы передачи возбуждения в синапсах. Постсинаптические потенциалы.
15. Основные принципы интегративно-координационной деятельности нервной системы. Принципы единства конвергенции и дивергенции.
16. Физиология спинного мозга. Саморегуляция тонуса скелетных мышц.
17. Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы.
18. Функциональные особенности вегетативных ганглиев. Передача возбуждения в адренергических и холинергических синапсах.
19. Кора больших полушарий головного мозга, ее функциональная роль. Локализация функций в коре больших полушарий.
20. Функциональная роль базальных ядер больших полушарий головного мозга.
21. Условный рефлекс. Закономерности образования и проявления. Классификация условных рефлексов.
22. Нервный центр. Особенности проведения возбуждения в нервных центрах. Время рефлекса. Рефлексометрия.
23. Торможение в центральной нервной системе, его роль и виды. Механизмы тормозных процессов.
24. Потребностно-мотивационный подход к изучению высшей нервной деятельности человека. Особенности мотивационного возбуждения.
25. Учение И.П.Павлова о первой и второй сигнальных системах действительности. Роль слова, внушение и самовнушение.
26. Память, ее значение в формировании приспособительных реакций. Механизмы и особенности кратковременной и долговременной памяти.
27. Лимбическая система мозга, ее функциональное значение.
28. Ретикулярная формация ствола мозга, ее функциональная роль.

29. Утомление. Феномен активного отдыха (И.М.Сеченов). Физиологическое обоснование рациональной организации труда.

30.Физиологические механизмы и особенности сна. Фазы сна. Сновидения, их роль.
31. Поведенческий акт с точки зрения функциональных систем П.К.Анохина
32. Результат действия как центральное звено приспособительной деятельности.
33. Врожденные формы поведения (безусловные рефлексы, инстинкты), их значение для приспособительной деятельности организма.
34. Динамический стереотип, его физиологическая сущность, значение для обучения и приобретения трудовых навыков.
35. Учение И.П.Павлова о типах высшей нервной деятельности человека. Классификация и характеристика типов.
36. Эмоции, их биологическое значение, классификация эмоций. Составные части и компоненты эмоций. Изменение вегетативных функций при эмоциональном возбуждении.
37. Ноцицепция и антиноцицепция, их периферические и центральные механизмы. Принципы обезболивания.
38. Физиологические свойства мышц. Классификация и особенности скелетных мышечных волокон. Нейромоторные единицы.
39. Физиологические свойства скелетных мышц. Одиночное мышечное сокращение, его фазы. Соотношение цикла возбуждения и сокращения скелетной мышцы. Тетанус.
40. Современная теория мышечного сокращения и расслабления. Электромеханическое сопряжение.
41. Гипофиз, его связь с гипоталамусом. Гормоны гипофиза, их функциональная роль.
42. Роль гормонов щитовидной железы в регуляции функций организма.
43. Мужские и женские половые гормоны, их физиологическая роль.
44. Эндокринная функция паращитовидных желез. Регуляция содержания в организме ионов кальция и фосфора.
45. Эндокринная функция поджелудочной железы.
46. Дыхание, его основные этапы. Биомеханика вдоха и выдоха. Давление в плевральной полости, его происхождение, изменение в различные фазы дыхательного цикла.
47. Регуляция дыхания. Механизмы смены дыхательных фаз (рефлексы Геринга-Брейера).
48. Газообмен в легких. Парциальное давление кислорода и углекислого газа в альвеолярном воздухе и напряжение газов в крови. Недыхательны

Прикрепленные файлы: 5 файлов

таблица-симпатика и парасимпатика.docx

— 11.94 Кб (Просмотреть файл, Скачать документ)

30-59.doc

— 266.00 Кб (Скачать документ)

2.Терморегуляторная.  При снижении температуры в  легких активируются экзотермические  процессы (химическая теплопродукция), одновременно уменьшается капиллярный  кровоток – физическая теплоотдача. 3.Барьерная. При вдыхании задерживаются механические частицы, которые потом удаляются ресничками мерцательного эпителия; Для крови: инактивация серотонина, брадикинина, простагландинов, адреналина, ацетилхолина; а также очистка крови от механических примесей. 4.Секреторная: 1)железы и секреторные клетки продуцируют 300-400 мл в сутки серозно-мукоидного секрета, который выполняет защитную функцию; 2)эндокринная функция: синтез простагландинов и других биологически активных веществ. 5.Экскреторная: 1)углекислый газ и другие летучие метаболиты (алкоголь)4 ацетоновый запах при диабетической коме; 2)удаление 500 мл воды в сутки. 6.Всасывательная. Хорошо всасывается эфир, хлороформ. Возможен ингаляционный путь введения паров и аэрозолей ряда лекарственных препаратов. 7.Очистительная: 1)секреторная активность и деятельность ресничного эпителия; 2)сосудисто-лимфатический путь.

 

49. Определение  жел и составляющих ее компонентов.

Показатели объема легких:

1. Дыхательный  объем (ДО) - количество воздуха,  которое чело¬век вдыхает и выдыхает в спокойном состоянии. В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких.

2. Резервный  объем вдоха - количество воздуха,  которое человек может дополнительно  вдохнуть после нормального вдоха.

3. Резервный  объем выдоха - количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.

4. Остаточный  объем - количество воздуха, оставшееся  в легких после максимального  выдоха. Даже при самом глубоком  выдохе в альвео¬лах и воздухоносных  путях остается некоторое количество воздуха.

5. Жизненная  емкость легких (ЖЕЛ) - наибольшее  количество воз¬духа, которое можно  выдохнуть после максимального  вдоха. Равна сумме - дыхательный  объем+резервный объем вдоха+резервный  объем выдоха. У муж¬чин ростом 180 см -4,5 л, у пловцов и гребцов до 8,0 л. Измеряется спирометром.

6. Резерв вдоха  - максимальное количество воздуха,  которое можно вдохнуть после  спокойного выдоха. Равен сумме  -дыхательный объ¬ем+резервный объем  вдоха.

7. Функциональная  остаточная емкость (ФОЕ) - количество возду¬ха, остающееся в легких после спокойного выдоха. Равна сумме - резерв¬ный объем выдоха+остаточный объем. У молодых -2,4 л и около 3,4 у по¬жилых.

8. Общая емкость  легких (ОЕЛ) - количество воздуха,  содержащееся в легких на высоте  максимального вдоха. Равна сумме - остаточный объем+жизненная емкость легких.

Ключевыми показателями являются - ДО, ЖЕЛ, ФОЕ. У женщин эти  по¬казатели, как правило, на 25% ниже, чем у мужчин.

 

50. Кровообращение, законы гемодинамики.

Гемодинамика  — раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в сердечно—сосудистой системе. Гемодинамика определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях.

Силой, создающей  давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60—70 мл крови (систолический объем) или 4—5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.

Почти во всех отделах  сосудистой системы кровоток носит  ламинарный характер — кровь движется отдельными слоями параллельно оси сосуда. При этом слой, прилежащий к стенке сосуда, остается практически неподвижным, по этому слою скользит второй, а по нему, в свою очередь, третий и т. д. Наряду с ламинарным в сосудистой системе существует турбулентное движение с характерным завихрением крови. Частицы крови перемещаются не только параллельно оси сосуда, как при ламинарном кровотоке, но и перпендикулярно ей трения жидкости.

Соотношение между  характером течения жидкости в жестких  трубках и давлением обычно определяют по формуле Пуазейля. Используя эту формулу, можно вычислить сопротивление R току крови в зависимости от ее вязкости ή, длины l и радиуса r сосуда:

R=8lή/πr2

Сосудистую систему  в целом можно представить  в виде последовательно и параллельно соединенных трубок разной длины и диаметра. В случае последовательного соединения общее сопротивление составляет сумму сопротивлений отдельных сосудов: R = R1+ R2 + … + Rn.При  параллельном соединении величину сопротивления вычисляют по другой формуле: 1/R = 1/R1 + 1/R2 + ... + + 1/Rn. Учитывая сложность геометрии сосудов целого организма, ее непостоянство, зависящее от открытия и закрытия шунтов, коллатералей, степени сокращения гладких мышц, эластичности стенок, изменения вязкости крови и других причин, в реальных условиях рассчитать величину сосудистого сопротивления трудно. Поэтому его принято определять как частное от деления кровяного давления Р на минутный объем крови Q:

R = P/Q.

Для всей сосудистой системы организма в целом  эта формула применима лишь при том условии, если в конце системы, т. е. в полых венах вблизи места их впадения в сердце, давление будет близким к нулю. Соответственно при необходимости вычисления сопротивления отдельного участка сосудистой системы формула приобретает вид

R=Р1—Р2/Q

Значения P1 и P2 отражают давление в начале и конце определяемого  участка.

Основными показателями гемодинамики являются объемная скорость, скорость кругооборота крови, давление в разных областях сосудистой системы. Объемная скорость движения крови характеризует ее количество (в миллилитрах), протекающее через поперечное сечение сосуда за единицу времени (1 мин). Объемная скорость кровотока прямо пропорциональна перепаду давления в начале и конце сосуда и обратно пропорциональна его сопротивлению току крови. В организме отток крови от сердца соответствует ее притоку к нему. Это означает, что объем крови, протекающей за единицу времени через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков.

Линейная скорость движения крови (v) характеризует скорость перемещения ее частиц вдоль сосуда при ламинарном потоке. Она выражается в сантиметрах в секунду и  определяется как отношение объемной скорости кровотока Q к площади поперечного  сечения сосуда πr2:

v=Q/πr2

Полученная таким  образом величина является сугубо средним  показателем, так как, согласно законам  ламинарного движения, скорость перемещения  крови в центре сосуда является максимальной и падает в слоях, прилежащих к сосудистой стенке.

Скорость кругооборота крови отражает время, за которое частица крови проходит большой и малый круг кровообращения. Для определения скорости кругооборота обычно используют введение радиоактивной метки с последующим контролем ее появления в соответствующей области.

 

51. Функциональные типы сосудов.

Сосуды, составляющие большой и малый круг кровообращения  подразделяют на несколько типов: амортизирующие, резистивные, сосуды—сфинктеры, обменные, емкостные, шунтирующие.

К амортизирующим сосудам относят аорту, легочную артерию и прилежащие к ним участки крупных сосудов. В их средней оболочке преобладают эластические элементы. Благодаря такому приспособлению сглаживаются возникающие во время регулярных систол подъемы артериального давления.

Резистивные сосуды — концевые артерии и артериолы — характеризуются толстыми гладкомышечными стенками, способными при сокращении изменять величину просвета, что является основным механизмом регуляции кровоснабжения различных органов.

Сосуды—сфинктеры являются последними участками прекапиллярных артериол. Они, как и резистивные сосуды, также способны изменять свой внутренний диаметр, определяя тем самым число функционирующих капилляров и, соответственно, величину обменной поверхности. К обменным сосудам относят капилляры, в которых происходит обмен различных веществ и газов между кровью и тканевой жидкостью. Стенки капилляров состоят из одного слоя эпителия и звездчатых клеток. Способность к сокращению у капилляров отсутствует: величина их просвета зависит от давления в резистивных сосудах. Емкостное звено сердечно—сосудистой системы составляют посткапиллярные венулы, вены и крупные вены. Вены по строению сходны с артериями, но их средняя оболочка значительно тоньше. Они имеют также клапаны, препятствующие обратному току венозной крови. Вены могут вмещать и выбрасывать большие количества крови, способствуя тем самым ее перераспределению в организме. Наиболее емкими являются вены печени, брюшной полости, подсосочкового сплетения кожи. Шунтирующие сосуды находятся лишь в некоторых областях тела (койка уха, носа, стопы и других органов) и представляют анастомозы, связывающие между собой артериальное русло с венозным (артериолы и венулы), минуя капилляры. При открытом состоянии этих сосудов кровь устремляется в венозное русло, резко уменьшая или полностью прекращая кровоток в капиллярах. Шунтирующие сосуды выполняют функцию регуляции регионарного периферического кровотока. Они участвуют в терморегуляции, регуляции давления крови, ее распределении.

 

52. ТОНУС Глад  мыш стенок сосудов не бывают расслаблены, им-ся мыш-ное напряж-е=ТОНУС. Тонич сост сопров-ся измен-м эл-х хар-к и незнач сокрщ-м мышцы. Вл-е на него факторы: 1) местные факторы - это реактивность микрососудов (способность гладко-мыш клеток к сокращению и расслаблению). Под реактивностью понимается степень чувствительности к разного рода агентам. Особый смысл - реактивность капилляров: т.к. они не имеют мышечного слоя, то измененяется проницаемость капилляров, чувствительность гл-мыш клеток в мелких сосудах больше чем в крупн сосудах в 10-100 раз. Реактивность не одинакова в различных органах и тканях (адреналин - микрососуды кожи более чувствительны к нему, чем скелетные мышцы).2) растяжение сосудов - гисто-механический механизм лежит в основе увеличения тонуса гл-мыш клеток сосудов при их растяжении.3) метаболиты - в основе гисто-метаболической регуляции лежит феномен расширения микрососудов и открытие сфинктеров под влиянием продуктов обмена, концентрация которых увеличивается пропорционально интенсивности работы данного функционирующего элемента или его степенью гипоксии (СО2, К+, Na+, молоч кислота, продукты гидролиза АТФ).4) вазоактивные вещества- гистамин (сосудорасш свойство)- брадикинин- серотонин - действие зависит от исходного тонуса сосудов, но большинство исследователей относит его к вазоконстрикторам (сосудосуж)5) кислород - кислород регулирующая функция сосудистого тонуса определяется свойством гладко-мыш клеток расслабляться при гипоксии даже в условиях отсутствия вазоделитаторов. В результате интенсивной работы ув потребление кислорода, развивается гипоксия,  вазоделитации и улучш кровоснабжения ткани. МИОГЕННАЯ РЕГУЛЯЦИЯ: ведущая роль,  при отсутствии внеш нерв и гумор влияний продолж-т сохр-ся остат тонус=БАЗАЛЬНЫЙ. В основе его - спрособность кл сосудов к спонтанн  активности и распростр возбужд-я от кл к кл, сосздает ритмичное колебание тонуса - эндогенную вазомоторику. Отчетл выр-на в артериолах. Возд-е, уменьш-е частоту МембрПот, увел частоту спонт разрядов, амплит сокр-я глад мышц. Гиперпол-я мембран -> исчезн спонт возб-я, мыш сокр-й. Метаболиты оказ-т д-е на клетки по принципу отрицат обратной связи. ГОРМОН-Я РЕГУЛ - вазопрессин (зад доля гипофиза) - сокращ сосудов и ув давления крови.- ангиотензин 1 и 2 - увеличение сосудистого тонуса. НЕРВНАЯ - адреналин, норадреналин - вазоконстрикт действие. - АХ - вазоделитаторное Вазомоторный (сосудодвигательный) центр - совокупность структур  в разн уровнях ЦНС, обеспечивает регуляцию кровообращения. В состав входят структуры, распол в осн средн мозге, продолг, гипотал, кора больш полуш. Сост из прессорного (сужение сосудов, ув периф давления, ув тонуса симпатики) и депрессорного отд ( ум активность симпатики, расш сосудов, ум АД) Важную роль в осуществл сосудистого тонуса играют барорецепторы. специфичны - реагир в строго опред пределах, поперечн характер импульсации, при быстром ув давления даже небольшой прирост прив к резк изменению импульсации, Изменение давления лишь в своем диапазоне. ГЛАД МЫШЦЫ. Веретенообразн одноядерн мыш клетки. Миофибриллы нерегулярно, иннервир-ся Симп НС, Парасимп НС, Метасимп НС-самостоят интегратив сист. Миогенный тонус глад мышц созд-т пейсмекеры. Сила сокр-я примерно как у попер-полос мышц, есть холинергические и адренергическ передачи, в генер-ии ПДглад мышц имеет больш роль Са2+, при блокаде Са каналов происходит угнетение ПД. Глад мыш кл растияжимые и пластичные, при определ степени растыж-я могут реагировать на него раздражением.

 

53. АД - важная характеристика  работы сердечно-сосудистой системы, имеющей ряд показателей. 1) СИСТОЛИЧ (мах давление) крови - уровень давления крови во время систолы сердца. У здорового чела = 100-130 мм рт ст А - боковое - давление на стенки сосудов Б - конечное - сумма потенциальной и кинетической энергии, которой обладает масса крови, движущейся в опред участок сосудистого русла. На 10-20 ммртст больше бокового. Разность м/у А и Б наз-ся удельным давлением.  2) ДИАСТОЛИЧ (мin) давление - уровень давления крови во время диастолы сердца. У Здор чела = 70-80 мм рт ст Разница м/у систолич и диастолич давлением наз-ся ПУЛЬСОВЫМ давлением. У Здор чела =40 мм рт ст  В дегоч артерии 25 и 10 мм РТ ст, Повышение АД по сравнению с определенными для данного орг величинами называют арт гипертензией, снижение - арт гипотензией.  Помимо систолического, диастолического, пульсового давления существует и так называемое среднее арт давление - средняя величина давления, при которой отсутствуют пульсовые колебания. Наблюдается гемодинамический эффект, как при естественно колеблющемся давлении. На величину давления влияют: - работа сердца - кол-во циркулируемой крови в сосудах, сопротивление, мелкие артерии и артериолы -резистентные сосуды.   - вязкость крови - величина просвета сосудов. Приток крови к сердцу увеличивает систолич сокращение и увеличивает ее отток в сосуды.

 

54. Способы определения  АД: 1. прямой - кровавый - пробивают сосуд, вставляю трубку, кровь бьет вверх и замеряют. (стефан Хейлс, Лошадь) 2. косвенный - бескровный Косвенным путем кровяное давление определяют прибором Рива-Роччи (сфигмомонометр). Вокруг руки укрепляют полую манжету, соединенную трубкой с монометром и резиновым баллоном для нагнетения воздуха. Накачивание в манжету воздуха создает в ней давление, которое сжимает артерию, => прекращается пульс в периферическом от манжеты конце артерии. Коротков предложил определять давление путем прослушивания звуков в артерии ниже манжеты. В обычных условиях, когда кровь течет по артерии непрерывно, колебания, создаваемые пульсирующим током крови, не слышны. В момент зажатия артерии манжетой в сосуде возникает турбулентность, создается характерный звук, прослушиваемый через фонендоскоп. Появление тона Короткова характеризует прохождение кровью сдавленного участка сосуда и соответствует систолическому давлению. Исчезновение звука совпадает с диастолическим давлением. Величину давления регистрируют с помощью монометра.

 

55. МИКРОЦИРКУЛ - движение крови и лимфы в микрососудистой части сосудистого русла. Оно объединяет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.

Информация о работе Шпаргалки по "Физиологии человека и животных