Шпаргалка по "Физиологии"

Автор работы: Пользователь скрыл имя, 14 Января 2014 в 17:05, шпаргалка

Краткое описание

Работа содержит ответы на экзаменационные вопросы по "Физиологии".

Прикрепленные файлы: 1 файл

Otvety_na_ekzamenatsionnye_voprosy_po_Fiziologii.doc

— 2.04 Мб (Скачать документ)

 

Свойства гладких мышц.

1. Веретенообразные клетки (д. до 400мкм, ш. до 10мкм). 2. Одноядерные. 3. Не исчерчены, миозиновые и  актиновые волокна расположены  нерегулярно. 4. Сокращение инициируется  за счет нервных сплетений  (внутр.) или через вегетативные симпатические или парасимпатические влияния, гормоны, растяжение мышцы (внешн.). 5. Медленное сокращение. 6. Тонический с элементами фазического тип сокращений. Тоническая активность - поддержка сокращения. 7. Соединены десмосомами. Возбуждение проникает через весь лист мышцы, автоматическая ритмическая активность. 8. Сильное влияние гормонов и хим. препаратов. 9. В мышцах, образующих функциональный синтиций иннерв. редкая клетка, в мышцах, состоящих из множества двигательных единиц - почти каждая. 10. Вовлечены во многие непроизвольные процессы (сосуды, жкт).

 

# 6. Механизмы проведения возбуждения по нервным волокнам. Законы проведения возбуждения в нервах.

Проведение возбуждения  по целому нерву.  Опыт Гассера—Эрлангера.

Большинство нервов являются смешанными, т.е. представлены совокупностью нервных волокон, различающихся по диаметру и степени миелинизации. В 1934 г. Н. Гассер и Р. Эрлангер провели опыт по анализу составляющих потенциала действия нервного ствола. Используя длинный седалищный нерв лягушки-быка, они установили ряд фактов и сделали некоторые выводы.

  • Потенциал действия в нерве возникает при действии порогового стимула.
  • По мере увеличения интенсивности раздражения ПД нерва увеличивается градуально, достигая некоторого максимума. Такой ответ является результатом суммации ПД отдельных нервных волокон, каждое из которых возбуждается по закону «все или ничего».
  • Дальнейшее увеличение силы раздражения приводит не к увеличению амплитуды ответа, а к изменению его формы — возникает сложный потенциал действия. Нисходящая фаза ПД затягивается; на ней появляются дополнительные колебания,  отражающие возбуждение новых групп волокон А(а, р, у, 5).
  • При еще большем раздражении к ПД добавляются волны В (только в вегетативных нервах) и С.

Зная расстояние между раздражающими  нерв и отводящими (регистрирующими) электродами, а также время от момента нанесения стимула до начала проявления очередной волны (максимума) на графике сложного потенциала, Гассер и Эрлангер сделали вывод, что смешанный нерв состоит из трех типов волокон, каждый из которых обладает собственным порогом и скоростью проведения, и вычислили ее для каждого из них.

Наиболее быстро проводящие толстые  миелиновые волокна отнесены к группе А. Меньшая скорость проведения у  более тонких миелиновых волокон группы В. И, наконец, минимальна скорость проведения у тонких безмиелиновых волокон группы С.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Законы проведения возбуждения  по нервным стволам.

  • Закон физиологической и анатомической непрерывности — возбуждение может распространяться по нерву только при сохранении его морфологической и функциональной целостности. Травматическое повреждение нерва нарушают или полностью прекращают проведение возбуждения.
  • Закон изолированного проведения — возбуждение, распространяющееся в одной группе волокон (например, A«), не передается на волокна другой группы (например, В) того же ствола. Вследствие этого информация, передаваемая по разным типам волокон, носит строго направленный специфический характер.
  • Закон двустороннего проведения — возбуждение, возникающее в каком-либо участке нерва, распространяется в обе стороны от очага возникновения.

Нерв имеет самую высокую функциональную лабильность, самый короткий период абсолютной рефрактерности и практически неутомляем.

Проведение возбуждения  по нервным волокнам.

Согласно «кабельной» теории, предложенной в 1950 г. А. Германном и затем экспериментально подтвержденной А. Ходжкиным, возбуждение проводится непрерывно по безмиелиновым и прерывисто (сальтаторно, скачкообразно) по миелиновым волокнам. В 1952 г. Д. Лилли нанизал на железную проволоку стеклянные бусы (эквивалент миелина), оставив между ними промежутки. Сравнивая время прохождения тока по оголенному проводнику и по унизанному бусами, он установил, что в последнем случае скорость проведения намного выше, чем в первом.

Безмиелиновые волокна на всем протяжении имеют одинаковую электропроводность и сопротивление. Вследствие деполяризации участка мембраны возникающий в нем локальный (местный) ток распространяется только на рядом расположенный невозбужденный. Волна деполяризации идет последовательно, не имея возможности миновать ни один из невозбужденных участков волокна.

Миелиновые волокна имеют изолирующий слой, резко уменьшающий емкость мембраны нервного волокна и практически полностью предотвращающий утечку тока из него. Перехваты узла лишенные миелина, в отличие от миелиновых участков, имеют очень низкое сопротивление и поэтому являются центрами электрической активности. Практически все натриевые каналы сосредоточены в области перехватов — до нескольких тысяч на 1 мкм2, тогда как в миелиновых участках их вообще нет.

Невозбужденный участок волокна  в области перехвата электроположителен по отношению к аксоплазме, а возбужденный — электроотрицателен. Вследствие этого на поверхности волокна возникает продольная разность потенциалов. Так как волокно находится в токопроводящей среде, генерируемый в одном перехвате потенциал действия путем пассивного проведения «перескакивает» через миелинизированный участок к соседнему невозбужденному перехвату. В результате этого в нем появляется регенераторный потенциал действия, т.е. процесс деполяризации быстро распространяется.

Согласно определению Н. Бернштейна, «деполяризация — это пробоина в мембране, которая передвигается». Так происходит до тех пор, пока импульс не дойдет до конца аксона.

Вместе с тем следует учитывать, что определения «высокая» и  «низкая» скорость проведения имеют относительный характер и используются только в сравнительном плане. На самом деле даже в тонких безмиелиновых волокнах скорость проведения очень высока — от 2 до 15 м/с.

Итак, миелиновые волокна  имеют очевидные преимущества:

  • энергетически они более экономичны: на «выкачивание» Na+ до исходного градиента 10:1 тратится значительно меньше энергии, чем для реполяризации безмиелинового волокна;
  • быстро, точно и дифференцированно проводят различные виды чувствительности, обеспечивая максимально быстрые, адекватные реакции.

В процессе эволюции высших организмов скачок в развитии нервной системы был, по-видимому, связан с началом миелинизации нервных волокон. В онтогенезе, особенно у человека, отмечена корреляция между ми-елинизацией некоторых проводящих путей и усложнением рефлекторного и целостного приспособительного поведения.

 

#7. Механизмы проведения  возбуждения в синапсах. Особенности  функционирования возбуждающих  и тормозящих синапсов. Свойства  синапсов.

Синапс — специализированный контакт между нервными клетками или нервными клетками и другими возбудимыми образованиями, обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов осуществляется взаимодействие разнородных по функциям тканей организма, например нервной и мышечной, нервной и секреторной.

Структура синапса.

Пресинаптическое окончание аксона нейрона при подходе к иннервируемой клетке теряет миелиновую оболочку, что несколько снижает скорость распространения волны возбуждения. Небольшое утолщение на конце волокна, называемое синоптической бляшкой, содержит синаптические пузырьки размером 20—60 нм с медиатором — веществом, способствующим передаче возбуждения в синапсе.

Синаптическая щель — пространство между пресинаптическим окончанием и участком мембраны эффекторной клетки является непосредственным продолжением межклеточного пространства.

Постсинаптическая мембрана — участок эффекторной клетки, контактирующий с пресинаптической мембраной через синаптическую щель.

Классификация синапсов.

В соответствии с морфологическим принципом синапсы подразделяют на:

•  аксо-аксональные (между двумя  аксонами);

•  аксодендритические (между аксоном  одного нейрона и дендритом другого);

•  аксосоматические (между аксоном  одного нейрона и телом другого);

•  дендродендритические (между дендритами двух или нескольких нейронов);

•  нервно-мышечные (между аксоном  мотонейрона и исчерченным мышечным волокном);

•  аксоэпителиальные (между секреторным  нервным волокном и грану-лоцитом);

• межнейронные (общее название синапсов между какими-либо элементами двух нейронов).

Все синапсы делят на центральные (в головном и спинном мозге) и периферические (нервно-мышечные, аксоэпителиальные и синапсы вегетативных ганглиев).

В соответствии с нейрохимическим  принципом синапсы классифицируют по виду химического вещества — медиатора, с помощью которого происходит возбуждение и торможение эффекторной клетки.

По способу передачи возбуждения синапсы подразделяют на три группы. Первую составляют синапсы с химической природой передачи посредством медиаторов (например, нервно-мышечные); вторую — синапсы с передачей электрического сигнала непосредственно с пре- на постсинаптическую мембрану. Третья группа представлена «смешанными» синапсами, сочетающими элементы как химической, так и электрической передачи.

По конечному физиологическому эффекту, а также по изменению потенциала постсинаптической мембраны, различают возбуждающие и тормозные синапсы.

Механизм проведения  возбуждения в синапсах. Передача возбуждения в химическом синапсе — сложный физиологический процесс, протекающий в несколько стадий. Он включает синтез и секрецию медиатора; взаимодействие медиатора с рецепторами постсинаптической мембраны; инактивирование медиатора. В целом синапс осуществляет последовательную трансформацию электрического сигнала, поступающего по нервному волокну, в энергию химических превращений на уровне синаптической щели и постсинаптической мембраны, которая затем снова трансформируется в энергию распространяющегося возбуждения в эффекторной клетке.

Свойства синапсов.

  • Пластичность синапса.
  • Одностороннее проведение возбуждения.
  • Низкая лабильность и высокая утомляемость синапса обусловлены временем распространения предыдущего импульса и наличием у него периода абсолютной рефрактерности.
  • Высокая избирательная чувствительность синапса к химическим веществам обусловлена специфичностью хеморецепторов постсинаптической мембраны.
  • Способность синапса трансформировать возбуждение связана с его низкой функциональной лабильностью и спецификой протекающих в нем химических процессов.
  • Синаптическая задержка, т.е. время между приходом импульса в преси-наптическое окончание и началом ответа, составляет 1—3 мс. Суммация возбуждений определяется переходом местного возбуждения в распространяющееся в результате временного взаимодействия серии возбуждающих постсинаптических потенциалов.
  • Трофическая функция синапсов

Нейромедиаторы - физиологически активные вещества, вырабатываемые нервными клетками. С помощью нейромедиаторов нервные импульсы передаются от одного нервного волокна другому волокну или другим клеткам через синаптическую щель.

Нейромодуляторы - химические вещества, которые действуют как нейромедиаторы, но не ограничиваются синаптической щелью, а рассредотачиваются повсюду, модулируя действие многих нейронов в определенной области.

 

#8 Проанализируйте физиологические функции нейрона, обеспечивающие его «интегративную деятельность» (П.К.Анохин, 1974)

Нейрон – основная структурная и функциональная единица центральной нервной системы. С позиции об анатомическом, функциональном и генетическом единстве нервной клетки нейрон  с его отростками – дендритами и аксоном – является основной структурной единицей нервной системы.

Основной функцией нейронов является их 1.способность к возбуждению. Возбуждение может возникать как в результате синаптических влияний на нейрон других нервных клеток, так и за счет эндогенных цитоплазматических процессов. Внешним выражением возбуждения нейрона является колебание электрического потенциала на его мембране. В невозбужденном нейроне регистрируется мембранный потенциал, или потенциал покоя, около —70 мВ.

2. синтез БАВ

3. воспроизведение информации

4. хранение и интеграция информации  в пресинаптических окончаниях.

5. в аксоне: аксонный транспорт,  генерация электрических импульсов,  выделение медиатора. 

Каждый нейрон синтезирует в своем теле и затем выделяет во всех своих синапсах один  и тот же медиатор, поэтому нейроны и ацетилхолиновой передачей возбуждения называются холинергическими, с адреналиновой – адренергическими.

Дофаминергические нейроны у млекопитающих  находятся в гипоталамусе. Норадренергические нейроны обнаружены в составе среднего мозга, моста и продолговатого мозга. В состав дорсального и медиального ядер продолговатого мозга, моста и среднего мозга входят серотонические нейроны.

Интегративная деятельность нейрона: наличие многочисленных специфических хеморецептивных участков на постсинаптических мембранах нейронов позволило сформулировать химическую теорию работы нервных клеток. Электрические импульсы, приходящие к синапсам нейрона через медиаторы, трансформируются в химические процессы на постсинаптической мембране, которые в свою очередь вовлекают в биохимические процессы цитоплазматические и ядерные структуры клетки. Внутриклеточные молекулярные преобразования приходящих к нейрону гетерогенных возбуждений обозначаются как интегративная деятельность нервной клетки. В основе химической теории интегративной деятельности нейрона лежит утверждение о том, что метаболический процесс, развертывающийся в цитоплазме нейрона, закреплен генетически и является специфичным по отношению к отдельным постсинаптическим структурам.

Информация о работе Шпаргалка по "Физиологии"