Роль печени в пищеварении и обмене веществ

Автор работы: Пользователь скрыл имя, 24 Марта 2013 в 16:35, реферат

Краткое описание

Печень играет огромную роль в пищеварении и обмене веществ. Все вещества, всасывающиеся в кровь, обязательно поступают в печень и подвергаются метаболическим превращениям. В печени синтезируется различные органические вещества: белки, гликоген, жиры, фосфатиды и другие соединения. Кровь поступает в нее по печеночной артерии и воротной вене. Причем 80 % крови, идущей от органов брюшной полости, поступает по воротной вене и только 20 % — по печеночной артерии. Кровь оттекает от печени по печеночной вене.

Прикрепленные файлы: 1 файл

Роль печени.docx

— 47.98 Кб (Скачать документ)

Пигментный обмен

Возникновение желтухи всегда обусловлено  нарушением обмена билирубина, который  образуется в результате распада  гемоглобина эритроцитов и разрушения гема. Этот процесс является естественной составной частью постоянного обновления красной крови в организме.

 

Образование билирубина

Гемоглобин превращается в билирубин  в ретикулоэндотелиальной системе, главным образом в печени, селезенке  и костном мозге посредством  сложного комплекса окислительно-восстановительных  реакций. Конечным продуктом распада  является биливердин, не содержащий железа и белковой части. Клетки ретикулоэндотелиальной системы выделяют в кровь непрямой, свободный билирубин. За сутки у  человека распадается около 1% циркулирующих  эритроцитов с образованием 100 - 250 мг билирубина, при этом 5 - 20% билирубина образуется из гемоглобина не зрелых, а преждевременно разрушенных эритроцитов  и из других гемсодержащих веществ. Это так называемый шунтовои или ранний билирубин.

Исследованиями с введением  в организм изотопных предшественников гема (15N- и 14С-глицин) установлено, что большинство образующихся меченых желчных пигментов выделяются с калом в виде уробилина или стеркобилина в период между 90-м и 150-м днем после введения изотопа, что соответствует продолжительности жизни эритроцитов [Gray С. Н., 1950, 1959; London J. М., 1950].

Выявлено незначительное содержание меченого пигмента в кале сразу же после применения изотопного предшественника, составляющее от 10 до 20% всей меченой  пигментной экскреции, что соответствует  раннему, или шунтовому, билирубину.

Значительное увеличение образования  раннего билирубина обнаружено при  болезнях, связанных с неэффективным эритропоэзом, таких, как железодефицитная анемия, пернициозная анемия, талассемия, сидеробластическая анемия, эритропоэтическая порфирия, свинцовое отравление. При этих состояниях количество раннего пигмента колеблется от 30 до 80% всех желчных пигментов. Больные с этой патологией имеют значительно увеличенную фекальную уробилиногенную экскрецию как следствие увеличенного тотального желчного пигментного оборота, но без укорочения жизни эритроцитов периферической крови.

Существование второго неэритроцитного компонента раннего билирубина доказано с применением меченой аминолевулиновой кислоты, являющейся маркером гема из других источников. Наиболее вероятным источником неэритроцитного гема служат печеночные протеиды: миоглобин, цитохромы, каталаза и триптофанпирролаза печени.

Экспериментально установлено, что  печеночная часть раннего билирубина может увеличиваться после анестезии, применения фенобарбитала. Этим может объясняться повышение сывороточного билирубина, часто наблюдаемое непосредственно после операции [Israels L. G., 1970].

Обмен билирубина

Печень выполняет три важнейшие  функции в обмене билирубина: захват билирубина из крови печеночной клеткой, связывание билирубина с глюкуроновой кислотой и выделение связанного билирубина из печеночной клетки в желчные капилляры. Перенос билирубина из плазмы в гепатоцит происходит в печеночных синусоидах.

Свободный (непрямой) билирубин отделяется от альбумина в цитоплазменной мембране, внутриклеточные протеины захватывают билирубин и, возможно, ускоряют перенос билирубина в гепатоцит (рис. 10). A. J. Levi и соавт. (1969) изолировали из цитоплазмы печени 2 неспецифических связывающих протеина, обозначенных как Y- и Z-протеины, которые, по мнению авторов, отвечают за большую часть внутриклеточного захвата билирубина. Протеин У присутствует в печени в относительно большом количестве и связывает также другие органические анионы, такие, как бромсульфалеин, метаболиты кортизона [Litmack G., 1971]. Предполагают, что печеночная мембрана активно участвует в захвате билирубина из плазмы. В подтверждение этого приводятся данные об угнетении рифампицином печеночного подъема билирубина раньше, чем включаются неспецифические связывающие протеины.

Непрямой билирубин в клетке переносится в мембраны эндоплазматической сети, где билирубин связывается  с глюкуроновой кислотой. Эта реакция катализируется специфическим для билирубина ферментом УДФ-глюкуронилтрансферазой. Соединение билирубина с сильно поляризующей глюкуроновой кислотой делает его растворимым в воде, что и обеспечивает переход в желчь, фильтрацию в почках и быструю (прямую) реакцию с диазореактивом.

Транспорт билирубина

Выделение билирубина в желчь представляет собой конечный этап обмена пигмента в печеночных клетках. В желчи  обнаруживается лишь небольшое количество несвязанного билирубина, связывание требуется для экскреции пигмента печенью. О механизмах переноса билирубина из печени в желчь известно мало; определенную роль играет градиент концентрации. Некоторые вещества конкурируют  с билирубином за путь выделения  в желчь и могут вызвать  желтуху. К ним относятся анаболические  стероиды с С17-замещенным радикалом, рентгеноконтрастные препараты для холецистографии, бромсульфалеин. G. D. Raymond, J. Т. Galambos (1971) при исследовании максимальной экскреции билирубина у человека показали, что печень способна выделить пигмента в 10 раз больше, чем его образуется в физиологических условиях. Таким образом, у здорового человека есть большой функциональный резерв для экскреции билирубина. При ненарушенном связывании переход билирубина из печени в желчь зависит от скорости секреции желчи. Предполагают, что экскреция билирубина находится под гормональным контролем, так как скорость выделения связанного билирубина уменьшается у гипофизэктомированных животных и может быть нормализована гипофизарными гормонами или тироксином [Gartner L. M., Arias I. M., 1972]. Билирубин выделяется из печени в желчь с помощью цитоплазматических мембран билиарного полюса гепатоцита, лизосом и аппарата Гольджи.

Образование фекальных  желчных пигментов

Небольшая часть билирубина (около 10%) восстанавливается до уробилиногена  на пути в тонкий кишечник во внепеченочных  желчных ходах и желчном пузыре. Из тонкого кишечника часть образовавшегося  уробилиногена всасывается через  кишечную стенку, попадает в v.portae и током крови переносится в печень (так называемая кишечно-печеночная циркуляция уробилиногена). В печени пигмент полностью расщепляется. Однако незначительное количество уробилиногена может попадать в общий круг кровообращения и тогда определяется в моче

Внешнесекреторная функция печени. Образование и выделение желчи  имеет жизненно важное значение для организма.

Желчь - сложный водный раствор  органических и неорганических веществ, с осмотическими свойствами, близкими к таковым плазмы. Основными органическими  компонентами желчи являются желчные  кислоты, фосфолипиды, холестерин и желчные пигменты. Другие органические составляющие, включая протеины, присутствуют в очень малых концентрациях- Желчные кислоты и фосфолипиды (лецитин) составляют основную часть твердой фракции желчи.

Сложилось мнение, что фиксированное  соотношение концентрации желчных  кислот, фосфолипидов и холестерина обеспечивает им более высокую растворимость в воде.

Речь идет об образовании устойчивой мицеллы, которая впоследствии была названа липидным комплексом. На его  поверхности могут адсорбироваться  другие компоненты желчи [Нестерин М. Ф., 1967].

Физиологическая роль липидного комплекса  заключается, таким образом, в обеспечении  не только эффективного пищеварения, но и функционирования особой выделительной  системы: из печени в кишечник.

Основные компоненты желчи (желчные  кислоты, фосфолипиды, холестерин), всасываясь в кишечнике, постоянно совершают печеночно-кишечный круговорот, что позволяет поддерживать оптимальную концентрацию активных компонентов желчи в период пищеварения, а также разгружает обмен веществ и облегчает синтетическую работу печени. Нарушения состава желчи могут способствовать образованию конкрементов в желчевыводящих путях.

Желчные кислоты (ЖК) являются важнейшим  стабилизатором коллоидного состояния  желчи. Достигнуты определенные успехи в изучении обмена желчных кислот и нарушений их метаболизма при  различных поражениях печени.

елчные кислоты синтезируются из холестерина, и на это расходуется около 40% его содержания в организме [Dietschy I. M. et al., 1970]. В печени человека образуются две 2 4-углеродные желчные кислоты: холевая (ХК) и хенодезоксихолевая (ХДХК).

Первым этапом при синтезе холевой кислоты является 7α-гидроксилированяе холестерина с образованием 5-холестен-Зβ, 7α-диола, которое катализируется микросомальной фракцией гомогената печени. Затем через серию промежуточных реакций, включающих 12α-гидроксилирование и редуци рование двойной связи в 5 положении, образуется 5 β-холестен-3α, 73α, 12α-триол. Окисление его боковой цепи, катализируемое митохондриальной фракцией гомогената печени, приводит к образованию холевой кислоты или, точнее, холил-КоА-эстера

Структурные изменения, происходящие при преобразовании холестерина  в хенодезоксихолевую кислоту, те же самые, что и при образовании  ХК, за исключением введения 12α-гидроксильной  группы.

При различных состояниях, ведущих  к уменьшению пула ЖК (потеря желчи  через фистулу, прием холестирамина, резекция тонкой кишки), синтез ЖК увеличивается в 5 - 10 раз [Javitt N., 1968; Hauton I. et al., 1968; Mosbach E. H., 1972]. В противовес этому внутривенное или пероральное введение ЖК угнетает холатообразование [Фердман Д. П., 1966; Скуя Н. А., 1972]. Эти данные позволили прийти к заключению, что биосинтез ЖК регулируется по типу обратной отрицательной связи на основании количества ЖК, проходящих через печень в единицу времени. В опытах in vitro на крысах и на изолированной печени кролика показано, что основным ферментом, регулирующим биосинтез ЖК, является 7α-гидроксилаза; 12α-гидроксилаза может выполнять вторичную регулирующую функцию, определяя отношение ХК/ХДХК.

 

 

Детоксицирующая и клиренсная функция печени.

Как уже указывалось, печень участвует  в обезвреживании ряда эндогенных токсических  продуктов клеточного метаболизма  или веществ, поступивших извне. Детоксикации подвергаются вещества, образуемые микробами в кишечнике и через портальную систему попадающие в печень. Это токсические продукты обмена аминокислот - фенол, крезол, скатол, индол, аммиак. Реакции детоксикации осуществляются с помощью ферментов, связанных с гладким эндоплазматическим ретикулумом и митохондриями.

Окислительные процессы нейтрализуют ароматические углеводороды, некоторые  стероидные гормоны, атофан. К окислительным процессам относятся дегидрирование этанола под действием алкогольдегидрогеназы. Последняя превращает этиловый алкоголь в альдегид с последующим его окислением.

Восстановительные реакции делают безвредными многочисленные нитросоединения, в том числе 2,4-динитрофенол, превращающиеся в аминосоединения.

Детоксикация ряда лекарственных веществ, например сердечных гликозидов, алкалоидов, происходит в результате гидролиза.

Некоторые вещества детоксицируются путем включения в синтез веществ, безразличных для организма или используемых в различных метаболических процессах (включение аммиака в синтез мочевины, нуклеиновых кислот).

Важнейшей реакцией детоксикации является конъюгация, ведущая к инактивированию или повышению растворимости и ускорению выведения образующихся продуктов. Обезвреживание происходит за счет соединения с глюкуроновой или серной кислотой. С помощью конъюгации инактивируются стероидные гормоны, билирубин, жлечные кислоты, ароматические углеводороды и их галогенопроизводные. В качестве обезвреживающих веществ в организме используются также глицерин, таурин, цистеин для образования парных соединений ЖК, бензойной кислоты, никотиновой кислоты.

Химический клиренс крови может  осуществляться печенью путем избирательного поглощения вещества из крови и выделения  его из организма желчью без химических превращений, например, холестерин может  частично выделяться с желчью в неизмененном виде.

Нерастворимые частички удаляются  из крови путем активного фагоцитоза купферовскими клетками. Фагоцитарные клиренсные функции купферовских клеток связаны прежде всего с их иммунной защитной ролью, они выступают в качестве фиксаторов иммунных комплексов. Купферовские клетки наряду с другими клетками ретикулоэндотелиальной системы фагоцитируют различные инфекционные агенты, удаляют из тока крови разрушенные эритроциты.

Обмен гормонов и витаминов

Стероидные гормоны (глюкокортикостероиды, андрогены, эстрогены, альдостерон) образуются вне печени, но ей принадлежит важнейшая роль в их инактивации и распаде. Именно печень осуществляет ферментативную инактивацию и конъюгацию стероидных гормонов с глюкуроновой и серной кислотами. Печень активно влияет на гомеостатическую регуляцию уровня глюкокортикоидных гормонов. Она синтезирует также специфический транспортный белок крови - транскортин, который связывает гидрокортизон, делая его временно неактивным.

 

Инактивация серотонина и гистамина

совершается путем окислительного дезаминирования с участием высокоактивной МАО и гистаминазы. Повышение концентрации гистамина может быть одной из причин кожного зуда и язвообразования в желудочно-кишечном тракте.

Печень участвует в обмене почти  всех витаминов, в ней происходит их депонирование и частично разрушение. Обмен витамина А на всех этапах прямо зависит от функции печени. Всасывание поступающего с пищей жирорастворимого витамина А в кишечнике вместе с другими веществами липидной природы происходит благодаря эмульгирующему действию желчи. Большая часть витамина А накапливается печенью в мельчайших жировых капельках в цитоплазме печеночных и купферовских клеток. Так же, как и в кишечнике, в печени каротин превращается в витамин А.

При заболеваниях печени нарушаются всасывание в кишечнике, накопление в печеночной ткани и поступление  витамина в кровь. Присутствие желчи  в кишечнике - необходимое условие  всасывания и других жирорастворимых  витаминов - D, Е, К. Витамин Е (токоферол) ингибирует процессы окисления, и его  недостаток в организме ведет  к повреждению паренхимы печени. Витамин К участвует в синтезе факторов протромбинового комплекса, осуществляемом гепатоцитами, и недостаточное его всасывание в кишечнике служит одной из причин гипопротромбинемии и геморрагического диатеза при патологии печени.

Информация о работе Роль печени в пищеварении и обмене веществ