Автор работы: Пользователь скрыл имя, 30 Ноября 2013 в 18:26, реферат
Клеточная теория – одно из выдающихся обобщений биологии прошлого столетия, давшее основу для материалистического подхода к пониманию жизни, к раскрытию эволюционных связей между организмами.
Клеточная теория сохранила свое значение и в настоящее время.
Клеточная теория
Клеточная теория – одно из выдающихся обобщений биологии прошлого столетия, давшее основу для материалистического подхода к пониманию жизни, к раскрытию эволюционных связей между организмами.
Клеточная теория сохранила свое значение
и в настоящее время. Она была
неоднократно проверена и дополнена
многочисленными материалами о
строении, функциях, химическом составе,
размножении и развитии клеток разнообразных
организмов.
Современная клеточная теория включает
следующие положения:
Строение клетки
Клетка – основная структурно-функциональная единица всех живых организмов, элементарная живая система.
Клетки всех организмов имеют единый план строения, в котором чётко проявляется общность всех процессов жизнедеятельности. Сами клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки – цитоплазма и ядро.
Клетка покрыта мембраной, состоящей
из нескольких слоёв молекул, обеспечивающей
избирательную проницаемость
Ядро.
Ядро – самый заметный и самый большой органоид клетки, который первым привлёк внимание исследователей. Клеточное ядро было открыто в 1831г. шотландским учёным Робертом Брауном. Ядро можно сравнить с кибернетической системой, где имеет место хранение, переработка и передача в цитоплазму огромной информации, заключённой в очень малом объёме. Ядро играет главную роль в наследственности. Ядро выполняет также функцию восстановления клеточного тела(регенерация), является регулятором всех жизненных отправлений клетки. Форма ядра чаще всего шарообразная или яйцевидная.
Важнейшей составной частью ядра является хроматин – вещество, хорошо окрашивающееся ядерными красками.
Ядро отделено от цитоплазмы двойной мембраной, которая непосредственно связана с эндоплазматической сетью и комплексом Гольджи. На ядерной мембране присутствуют поры, которые (как и через наружную цитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.е. поры обеспечивают избирательную проницаемость мембраны.
Внутреннее содержимое ядра составляет
ядерный сок, заполняющий пространство
между структурами ядра. В ядре
всегда присутствует одно или несколько
ядрышек. В ядрышке образуются рибосомы.
Поэтому между активностью
В ядре расположены нитевидные образования – хромосомы. В ядре клетки тела человека(кроме половых) содержится по 46 хромосом. Хромосомы являются носителями наследственных задатков организма, передающихся от родителей потомству.
Большинство клеток содержит одно ядро, но существуют и многоядерные клетки (в печени, в мышцах и др.). Удаление ядра делает клетку нежизнеспособной.
Мембрана.
Если рассматривать в
«Мембрана – крепостная стена клетки», но только в том смысле, что она ограждает и защищает внутреннее содержимое клетки. Растительную клетку можно отделить от наружно оболочки. Можно разрушить оболочку у бактерий. Тогда может показаться, что они вообще ничем не отделены от окружающего раствора – это просто кусочки студня с внутренними включениями.
Новые физические методы, прежде всего электронная микроскопия, не только позволили с несомненностью установить наличие мембраны. Но и рассмотреть некоторые её детали.
Внутреннее содержимое клетки и её мембрана состоят в основном из одних и тех же атомов. Эти атомы – углерод, кислород, водород, азот – расположены в начале таблицы Менделеева. На электронной фотографии тонкого среза клетки мембраны видны в виде двух тёмных линий. С этих снимков может быть точно измерена толщина мембраны.
Итак, клеточная мембрана – очень мелкое молекулярное сито. Однако мембрана – весьма своеобразное сито. Её поры скорее напоминают длинные узкие проходы в крепостной стене средневекового города. Высота и ширина этих проходов в 10 раз меньше длины. Кроме того, в этом сите отверстия встречаются осень редко – поры у некоторых клеток занимают только одну миллионную часть площади мембраны. Это соответствует всего одному отверстию на площади обычного волосяного сита для просеивания муки, т.е. с обычной точки зрения мембрана вовсе не сито.
Цитоплазма.
Цитоплазма – полужидкая слизистая бесцветная масса, содержащая 75-80% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3% жиров и липидов, 1% неорганических и других веществ. Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д.. Слой цитоплазмы формирует различные образования: реснички, жгутики, поверхностные выросты.
В состав цитоплазмы входят вещества белковой природы. Во многих клетках, например у амёб, в клетках различных эпителиев, гиалоплазма(основное вещество цитоплазмы) содержит тончайшие нити, которые могут переплетаться и образовывать структуры, напоминающие войлок. Эти нитевидные (фибриллярные) связаны с выполнением механической функции: они образуют нечто подобное внутреннему скелету клетки. Фибриллы цитоплазмы не принадлежат к числу постоянных структур: они могут появляться и исчезать при различных состояниях клетки.
Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названа вакуолярной системой.
Органоиды клетки
Цитоплазма содержит ряд мельчайших структур клетки – органоидов, которые выполняют различные функции. Органоиды обеспечивают жизнедеятельность клетки.
Эндоплазматическая сеть. Название этого органоида отражает его место расположения в центральной части цитоплазмы. ЭПС представляет собой очень развёрнутую систему канальцев, трубочек, пузырьков, цистерн разной величины и формы, отграниченных мембранами от цитоплазмы клетки.
ЭПС бывает двух видов: гранулярная, т.е. состоящая из канальцев и цистерн, поверхность которых усеяна зёрнышками(гранулами) и агранулярная, т.е. гладкая(без гран). Граны в эндоплазматической сети есть ни что иное, как рибосомы. В клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная ЭПС преобладает в клетках. Активно синтезирующих белок. Считается, что агранулярная сеть в большей степени предоставлена в тех клетках, где идёт активный синтез липидов(жиров и жироподобных веществ).
Оба вида ЭПС не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей её средой.
Рибосомы. Рибосомы – не мембранные клеточные органоиды, состоящие из рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё остаётся загадкой. В электронном микроскопе они имеют вид округлых или грибовидных гранул.
Каждая рибосома разделена желобком
на большую и малую части(
Комплекс Гольджи. Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС, где они концентрируются в специальный аппарат – комплекс Гольджи, расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом и т.д.
Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи и в 1898г. был назван «комплексом(аппаратом) Гольджи». Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок доставляется в требуемое место.
Лизосомы. Лизосомы – это органоиды клетки овальной формы, окружённые однослойной мембраной. В них находится набор ферментов, которые разрушают белки, углеводы, липиды. В случае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушать внутреннее содержимое клетки, и она погибает.
Клеточный центр. Клеточный центр можно наблюдать в клетках, способных делиться. Он состоит из двух палочковидных телец – центриолей. Находясь около ядра и комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в образовании веретена деления.
Энергетические органоиды. Митохондрии называют энергетическими станциями клетки. Такое название обуславливается тем, что именно в митохондриях происходит извлечение энергии, заключённой в питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей или гранул. Размеры и число их также непостоянны и зависят от функциональной активности клетки.
На электронных
В митохондриях обнаружены свои специфические ДНК и рибосомы. В связи с этим они самостоятельно размножаются при делении клетки.
Пластиды – особые органоиды растительных клеток, в которых осуществляется синтез различных веществ, и в первую очередь фотосинтез. В цитоплазме клеток высших растений имеется три основных типа пластид: зелёные пластиды – хлоропласты; окрашенные в красный, оранжевый и другие цвета – хромопласты; бесцветные пластиды – лейкопласты. Все эти типы пластид могут переходить один в другой.
Хлоропласты – по форме напоминают диск или шар с двойной оболочкой – наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и особые мембранные структуры – граны, связанные между собой и внутренней мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение солнечного света в химическую энергию АТФ(аденозитрифосфат). Энергия АТФ используется в хлоропластах для синтеза углеводов из углекислого газа и воды.
Хромопласты обычно окрашены в жёлтый, оранжевый, красный или бурый цвета. Сочетания хромопластов, содержащих разные пигменты, создаёт большое разнообразие окрасок цветков и плодов растений.
Лейкопласты – бесцветны, местом их локализации служат неокрашенные части растений.
Органоиды движения. Многие клетки одноклеточных и многоклеточных организмов обладают способностью к движению. Под этим понимается движение клетки в пространстве и внутриклеточное движение её органоидов. В жидкой среде движение клеток осуществляется движением жгутиков и ресничек, так перемещаются многие одноклеточные. Некоторые другие простейшие организмы, а также специализированные клетки многоклеточных передвигаются с помощью выростов, образующихся на поверхности клеток. Клетка находится в постоянном движении. Клеточное движение обеспечивается цитоскелетом, состоящем из микротрубочек, микронитей и клеточного центра. Микротрубочки – это длинные полые цилиндры, стенки которых состоят из белков. Микронити – очень тонкие структуры, состоящие из тысяч молекул белка, соединенных друг с другом.
Клеточные включения
К клеточным включениям относятся белки, жиры и углеводы.
Белки. Белки являются основными веществами клетки, Белки состоят из углерода, водорода, кислорода, азота и серы. Часто в состав белка входит фосфор. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ферментов(ускорителей течения химических реакций). Будучи продуктами жизнедеятельности живых организмов, белки обеспечивают возможность их существования, развития, созревания и воспроизведения себе подобных. В одной клетке насчитывается до тысячи разных белков. При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов.
Все эти вещества накапливаются в цитоплазме клетки в виде капель и зёрен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.
Роль белков в организме человека чрезвычайно разнообразна. Белки отличаются видовой, тканевой и индивидуальной специфичностью. Каждый белок при введении в организм теплокровного животного, в том числе и человека, вызывает образование антител, то есть обладает антигенными свойствами.