Анатомия сердца

Автор работы: Пользователь скрыл имя, 27 Октября 2013 в 11:46, реферат

Краткое описание

Сердце - полый мышечный орган, выполняющий функцию насоса. У взрослого его объем и масса составляют в среднем для мужчин 783 см3 и 332 г, для женщин - 560 см3 и 253 г.
Форма определяется возрастом, полом, телосложением, здоровьем, др. факторами. В упрощенных моделях описывается сферой, эллипсоидами, фигурами пересечения эллиптического параболоида и трехосного эллипсоида. Мера вытянутости (фактор) формы есть отношение наибольших продольного и поперечного линейных размеров сердца. При гиперстеническом типе телосложения отношение близко к единице и астеническом - порядка 1,5.

Прикрепленные файлы: 1 файл

анатомия и физиология сердца.doc

— 57.50 Кб (Скачать документ)

Анатомия  сердца 
 
Сердце - полый мышечный орган, выполняющий функцию насоса. У взрослого его объем и масса составляют в среднем для мужчин 783 см3 и 332 г, для женщин - 560 см3 и 253 г.  
Форма определяется возрастом, полом, телосложением, здоровьем, др. факторами. В упрощенных моделях описывается сферой, эллипсоидами, фигурами пересечения эллиптического параболоида и трехосного эллипсоида. Мера вытянутости (фактор) формы есть отношение наибольших продольного и поперечного линейных размеров сердца. При гиперстеническом типе телосложения отношение близко к единице и астеническом - порядка 1,5.  
Сердце состоит из четырех камер - LA и RA, LV и RV, разделенных перегородками. В RA входят полые, в LA - легочные вены. Из RV и LV выходят, соответственно, легочная артерия (легочный ствол) и восходящая аорта. RV и LA замыкают SHCC, LV и RA - BCC. Сердце расположено в нижней части переднего средостения, большая часть его передней поверхности прикрыта легкими. С впадающими участками полых и легочных вен, а также выходящими аортой и легочным стволом оно покрыто сорочкой (перикардом). В полости перикарда содержится небольшое количество серозной жидкости.

 

Кровоснабжение  сердца 
 
В большинстве случаев сердце кровоснабжается двумя (левой и правой) венечными артериями. Первая берет начало от левого аортального синуса и своим коротким стволом проходит в глубине между легочным стволом и левым ушком, где делится на огибающую и переднюю межжелудочковую ветви. Огибающая ветвь располагается в венечной борозде, по которой она переходит на диафрагмальную поверхность сердца. Передняя межжелудочковая ветвь спускается по одноименной борозде и достигает верхушки сердца. Правая венечная артерия отходит от правого аортального синуса, после чего направляется к венечной борозде и по ней огибает правый край сердца. Обе артерии дают многочисленные ветви к стенкам предсердий и желудочков. Отток крови от сердца происходит в венечный синус, передние вены сердца и вены, впадающие непосредственно в правое сердце. Венечный синус находится в заднем отделе венечной борозды между LA и LV. Его устье располагается в углу между нижней частью задней стенки RA и межпредсердной перегородкой ниже заслонки нижней полой вены. Отверстие синуса прикрыто заслонкой. В системе оттока от сердца большое значение принадлежит и лимфатическому руслу.

 

Сосудистая  система

Кровеносные сосуды - отходящие от сердца (артериальные) и притекающие  к нему (венозные) сосуды со связывающим  их микроциркуляторным руслом. Отходящие  от желудочков сердца сосуды начинаются одним стволом (легочная артерия и аорта, соответственно), подвергающиеся на своем протяжении разветвлениям (наиболее часто дихотомическим) до мелких ветвей, переходящих в микроциркуляторное русло. Последнее представлено сосудами притока (артериолами), оттока (венулами), а также пространственными сетями прекапилляров, капилляров и посткапилляров. Именно здесь осуществляется обмен крови с тканью исполнительных органов [35]. Венулы, сливаясь, образуют все более крупные сосуды, которые в итоге через ограниченное число ветвей (две для правого предсердия и четыре для левого ) впадают в предсердия. BCC начинается аортой, диаметр корня которой также, как и размеры сердца, определяется конституциональными и иными факторами, колеблясь у здоровых от 15 до 30 мм. Аорта дает начало артериальным сосудам. Различают восходящий отдел, дугу и нисходящий отдел аорты. Начальная часть восходящего отдела аорты расширена и называется луковицей. В стенке луковицы имеются три пазухи, соответствующие трем полулунным лепесткам расположенного здесь аортального клапана. Из правой и левой пазух луковицы отходят одноименные венечные артерии, осуществляющие кровоснабжение сердца. Диаметр венечных артерий в среднем в 10 раз меньше диаметра аорты. От дуги аорты отходят крупные сосуды, обеспечивающие кровоснабжение верхней части туловища - плечеголовной ствол, разделяющийся на правые подключичную и общую сонную артерии, левые сонная и подключичная артерии. Подключичные артерии кровоснабжают верхние конечности, сонные - голову и шею. От грудного отдела аорты отходят сосуды, кровоснабжающие грудную стенку и органы грудной полости, от брюшного - стенки и органы брюшной полости, а также крупные ветви для кровоснабжения дна туловища и нижних конечностей. Стенки крупных артерий имеют три основные оболочки: внутреннюю, среднюю и наружную, соответствующие эндокарду, миокарду и эпикарду сердца. Внутреннюю оболочку образуют эндотелий, подэндотелиальный слой и внутренняя эластическая мембрана. Эндотелий представлен соответствующими клетками. Подэндотелиальный слой состоит из тонких эластических и коллагеновых волокон, а также соединительно-тканных клеток и основного вещества, внутренняя эластическая мембрана - из эластических волокон. Средняя оболочка образована вложенными друг в друга концентрическими эластическими мембранами. В стенке аорты насчитывается до 40-60 таких мембран, пространства между которыми заполнены основным веществом, клетками соединительной ткани и характерными для сосудистой системы гладкомышечными клетками. Прикрепляясь на протяжении к эластическим мембранам, они обеспечивают изменение диаметра сосудов при работе сердца. Форма гладкомышечных клеток веретенообразная; их сократительный аппарат состоит из тонких - актиновых и толстых - миозиновых миофиламентов, причем на один толстый миофиламент приходится около 10 тонких. На протяжении аорты и отходящих от нее сосудов по мере разветвлений уменьшается число эластических мембран и возрастает доля мышечных волокон. В отличие от более близких к аорте разветвлений, называемых артериями эластического типа, на некотором удалении от нее стенки артерий представлены преимущественно гладкомышечными клетками - артерии мышечного типа. Наружная оболочка артерий образована соединительной тканью.  
Разветвляясь, истончаясь и все более увеличиваясь количественно артерии в итоге переходят в микроциркуляторное русло, сосуды которого изнутри выстланы эндотелием. По мере перехода от артериол к капиллярам у них все более уменьшаются средний и наружный слои. Вначале - это группы мышечных волокон, отдельные мышечные волокна, затем - просто соединительная ткань, относящаяся одновременно к сосудам микроциркуляторного русла и к соединительной ткани органов, в которых оно расположено. Диаметры капилляров микроциркуляторного русла и форменных элементов крови близки, что создает благоприятные условия для контактирования между их поверхностями и способствует обмену между кровью микроциркуляторного русла и тканью.  
 
Вены BCC собирают кровь из микроциркуляторного русла органов и тканей и постепенно,

сливаясь друг с другом, образуют все более крупные ветви, конечными коллекторами которых являются верхняя и нижняя полые вены, впадающие в RA. Только вены сердца самостоятельно открываются в правое сердце. Верхняя полая вена собирает кровь от венозных сосудов головы, шеи, верхних конечностей и стенок туловища, а нижняя - от нижних конечностей, стенок и органов дна туловища, органов и стенок брюшной полости. Обе вены, в отличие от впадающих в них сосудов, клапанов не имеют. Клапаны есть в большинстве венозных сосудов с диаметром более 2 мм и представляют собой складки стенок. Слоистое строение стенок венозных сосудов выражено гораздо слабее, чем артериальных, и границы между слоями провести трудно. Клеточные элементы соединительной ткани вен, артерий и миокарда одинаковы.  
Малый круг кровообращения начинается легочным стволом, анатомическое строение которого отвечает строению аорты. Различия между начальными отделами легочного ствола и аорты сводятся к размерам, включая толщину стенок, которая у легочного ствола меньше в среднем на 1/5. Легочный ствол разделяется на правую и левую легочные артерии, которые дают начало артериальному руслу легких. Систематически разветвляясь, артерии переходят в артериолы, переходящие в микроциркуляторное русло. Плотность упаковки капилляров микроциркуляторного русла малого круга в 2 раза выше, чем большого (его объем составляет в среднем 0,8 объема дыхательной части ткани легких), что способствует эффективности газообмена между кровью капилляров и воздухом. Кровь микроциркуляторного русла собирается сливающимися и постепенно укрупняющимися венозными сосудами легких. От каждого легкого формируются две легочные вены, впадающие в LA.  
Легочная артерия и ее крупные ветви относятся к сосудам эластического типа, затем они переходят в артерии эластомышечного и, наконец, - мышечного типа. В отличие от вен BCC легочные вены имеют более развитый средний слой с большим количеством соединительнотканных волокон и более сильный мышечный слой в особенности в местах впадения вен в LA, где формируются жомы, регулирующие их гемодинамические отношения с LA. В частности, закрывая просвет вен в систолу предсердия, они предупреждают ретроградное поступление в них крови.  
Наряду с сосудами системы легочной артерии в легких существуют бронхиальные сосуды BCC, обеспечивающие поступление в орган крови для трофических функций, образующих его тканей.  
Лимфатические сосуды идут параллельно венозным, сливаясь во все более крупные стволы, которые впадают в ветви терминальных венозных сосудов BCC. По ходу лимфатических сосудов на определенных уровнях имеются лимфатические узлы, выполняющие контрольные для протекающих в них веществ функции и поставляющие в кровь, а через нее и всем компартментам, иммунные органы (иммунные клетки, и др.).  
Иннервация кровеносных сосудов происходит в основном за счет ветвей симпатических нервов. Нервные волокна образуют разветвленные сплетения в сосудистой стенке, чем обеспечивается эффективная регуляция их тонуса, а значит регуляция кровотока в сосудах на разных уровнях и в различных отделах организма.

 

Физиология 
Система кровообращения едина не только в структурном, но и функциональном отношениях. Физиологию, как и анатомию, естественно рассматривать по компартментам.

Основной функцией сердца является обеспечение кровообращения сообщением крови кинетической энергии. Сердце поэтому часто ассоциируют с  насосом. Его отличают исключительно высокие производительность, скорость и гладкость переходных процессов, запас прочности и постоянное обновление тканей. Нужны экстраординарные факторы, чтобы нарушить устойчивость функционирования этого органа.

 

Механизм  мышечного сокращения  
 
Связь между электрическими импульсами проводящей системы сердца и активными деформациями кардиомиоцитов (и всего миокарда) поддерживается потоками ионов кальция. При возбуждении кардиомиоцитов и распространении по ним волн деполяризации происходят конформационные изменения сарколеммы. При этом ее проницаемость для ионов калия, натрия и кальция возрастает. С поступлением ионов натрия в клетку и выходом из нее калия формируется трансмембранный потенциал действия, одно из проявлений которого - открытие кальциевых каналов.  
Кальциевые каналы представляют собой особую разновидность белков, находящихся во взвешенном состоянии в липидном бислойном матриксе клеточных мембран и имеющих заполненные цитоплазмой каналы. Различают быстрые и медленные кальциевые каналы с соответствующими скоростями транспортирования ионов.

 

Регуляция мышечного  сокращения  
 
Функции кардиомиоцитов и миокарда в целом регулируются гормонами и нейромедиаторами через управление потоками ионов кальция по системе кальциевых каналов с помощью разнообразных механизмов. Это потенциал действия, системы энергообеспечения актомиозинового сопряжения, изменение числа и пропускной способности кальциевых каналов. Деятельность кардиомиоцитов в целостном миокарде синхронизируется проводящей системой сердца и нейрогуморальными механизмами. В результате сердце интегрируется в целостный орган не только в структурном, но и функциональном отношении. 

 

 

Периодическая организация  биомеханики сердца 
 
Функционирование сердца есть циклический процесс. Каждый цикл делится условно на систолу - период сокращения, и диастолу - период расслабления. В систолу желудочков предсердия находятся в диастоле и в диастолу - в систоле. Систолой и диастолой сердца принято считать систолу и диастолу желудочков. В систолу кровь выбрасывается из камеры сердца и в диастолу поступает в нее. Имеет место некоторое запаздывание систолы правых камер сердца к систоле левых.  
Систолу и диастолу предсердий и желудочков условно разделяют на более короткие промежутки времени. 
Систолу желудочков образуют периоды изоволюмического сокращения (напряжения) и изгнания. Период изоволюмического сокращения состоит из фаз асинхронного и собственно изоволюмического сокращения. В действительности процесс этот не является строго изоволюмическим, так как всегда сопровождается регургитацией части крови в предсердия. Створки атриовентрикулярных клапанов не поспевают закрываться за нарастающим давлением крови желудочков. Степень регургитации в физиологических условиях невелика. В патологических условиях она может сильно возрастать и тогда называть период сокращения изоволюмическим можно только условно. 
В фазу асинхронного сокращения (разновременное вовлечение в процесс сокращения разных областей миокарда) возникающие в миокарде напряжения порождают рост внутрижелудочкового давления. Границей между фазами асинхронного и собственно изоволюмического сокращения считается момент быстрого повышения внутрижелудочкового давления, когда скорость его роста на порядок больше, чем в диастолу. В период изоволюмического сокращения предсердно-желудочковые клапаны, а также клапан легочного ствола и аорты закрыты. Объем крови в желудочке не изменяется, а напряжения в стенке возрастают. Период изоволюмического сокращения продолжается до момента, когда давление крови в желудочках не станет равным давлению в легочном стволе или аорте. Как только оно становится большим, клапаны открываются и начинается период изгнания. В этом периоде выделяют фазы быстрого и медленного изгнания. Первая начинается от конца периода изоволюмического сокращения и продолжается до момента, пока скорость повышения давления в сосудах не достигнет максимума. Вторая фаза заканчиваеся моментом достижения объемом крови LV минимального значения. Она заканчивается раньше закрытия клапанов легочного ствола и аорты. Медленной фазой периода изгнания заканчивается систола.  
 
Диастолу желудочков образуют периоды изоволюмической релаксации и диастолического наполнения. Последний делят на фазы быстрого и медленного наполнения, а также систолу предсердий. Основной объем крови в желудочки поступает в фазу быстрого наполнения. Это не только запасенная предсердиями в их систолу кровь, но и транзитная через предсердия из полых и легочных вен. Фаза быстрого наполнения - в значительной мере активный процесс. Реализуется потенциальная энергия сжатия, накопленная в конце периода изгнания, когда желудочки, расширяясь, "засасывают" в себя кровь.  
В фазу медленного наполнения в желудочки поступают редуцированные объемы крови. Кровь из предсердий в желудочки поступает пассивно за счет предсердно-желудочкового градиента давления. Как только давление в предсердиях и желудочках выравнивается, начинается систола предсердий. В этой фазе оставшаяся порция крови активно перемещается в желудочки. 
Что касается периода изоволюмической релаксации, как и в период изоволюмического сокращения, регургитация крови делает его таковым условно. Особенно при патологических состояниях.  
Фазовая структура сердечного цикла определяется частотой сердечных сокращений (HR), с ростом которой укорачиваются все периоды и фазы, более существенно период изгнания и периоды и фазы диастолы. В патологических состояниях отдельные периоды и фазы также могут изменяться [12]. Отклонения длительностей фаз сердечного цикла от их исходной величины называются синдромом фазовых сдвигов. При снижении преднагрузки на сердце период изоволюмического сокращения удлиняется, а период изгнания укорачивается. При уменьшении периферического сопротивления (PR) укорачивается период изгнания, а при уменьшении диастолического артериального давления - период изоволюмического сокращения. Снижение сократимости приводит к удлинению всех фаз систолы.


Информация о работе Анатомия сердца