Автор работы: Пользователь скрыл имя, 19 Января 2014 в 09:18, курс лекций
Микробиология ( от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооруженным какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).
Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни.
Патогенность (“рождающий болезнь”)- способность микроорганизма вызвать заболевание. Это свойство характеризует видовые генетические особенности микроорганизмов, их генетически детерминированные характеристики, позволяющие преодолеть защитные механизмы хозяина, проявить свои патогенные свойства.
Вирулентность - фенотипическое (индивидуальное) количественное выражение патогенности (патогенного генотипа). Вирулентность может варьировать и может быть определена лабораторными методами (чаще- DL50- 50% летальная доза- количество патогенных микроорганизмов, позволяющая вызвать гибель 50% зараженных животных).
По способности вызывать заболевания микроорганизмы можно разделить на патогенные, условно- патогенные, непатогенные. Условно- патогенные микроорганизмы обнаруживают как в окружающей среде, так и в составе нормальной микрофлоры. В определенных условиях (иммунодефицитные состояния, травмы и операции с проникновением микроорганизмов в ткани) они могут вызывать эндогенные инфекции.
Основные факторы патогенности микроорганизмов - адгезины, ферменты патогенности, подавляющие фагоцитоз вещества, микробные токсины, в определенных условиях- капсула, подвижность микробов. Вирулентность связана с токсигенностью (способностью образования токсинов) и инвазивностью (способностью проникать в ткани хозяина, размножаться и распространяться). Токсигенность и инвазивность имеют самостоятельный генетический контроль, часто находятся в обратной зависимости (возбудитель с высокой токсигенностью может обладать низкой инвазивностью и наоборот).
Патогенность - т.е. способность микроорганизма вызывать заболевание- более широкое понятие, чем паразитизм. Патогенными свойствами могут обладать не только паразитические виды микробов, но и свободно живущие, в т.ч. возбудители сапронозов (иерсинии, легионеллы и др.). Естественной средой для последних является почва и растительные организмы, однако они способны перестраивать свой метаболизм в организме теплокровных животных и оказывать патогенное действие.
Адгезины и факторы колонизации- чаще поверхностные структуры бактериальной клетки, с помощью которых бактерии распознают рецепторы на мембранах клеток, прикрепляются к ним и колонизируют ткани. Функцию адгезии выполняют пили, белки наружной мембраны, ЛПС, тейхоевые кислоты, гемагглютинины вирусов. Адгезия- пусковой механизм реализации патогенных свойств возбудителей.
Факторы инвазии, проникновения в клетки и ткани хозяина. Микроорганизмы могут размножаться вне клеток, на мембранах клеток, внутри клеток. Бактерии выделяют вещества, способствующие преодолению барьеров хозяина, их проникновению и размножению. У грамотрицательных бактерий это обычно белки наружной мембраны. К этим же факторам относятся ферменты патогенности.
Ферменты патогенности- это факторы агрессии и защиты микроорганизмов. Способность к образованию экзоферментов во многом определяет инвазивность бактерий- возможность проникать через слизистые, соединительнотканные и другие барьеры. К ним относятся различные литические ферменты- гиалуронидаза, коллагеназа, лецитиназа, нейраминидаза, коагулаза, протеазы. Более подробно их характеристика дана в лекции по физиологии микроорганизмов.
Важнейшими факторами патогенности считают токсины, которые можно разделить на две большие группы- экзотоксины и эндотоксины.
Экзотоксины продуцируются во внешнюю среду (организм хозяина), обычно белковой природы, могут проявлять ферментативную активность, могут секретировать как грамположительными, так и грамотрицательными бактериями. Они обладают очень высокой токсичностью, термически нестойки, часто проявляют антиметаболитные свойства. Экзотоксины проявляют высокую иммуногенность и вызывают образование специфических нейтрализующих антител- антитоксинов. По механизму действия и точке приложения экзотоксины отличаются- цитотоксины (энтеротоксины и дерматонекротоксины), мембранотоксины (гемолизины, лейкоцидины), функциональные блокаторы (холероген), эксфолианты и эритрогенины. Микробы, способные продуцировать экзотоксины, называют токсигенными.
Эндотоксины высвобождаются только при гибели бактерий, характерны для грамотрицательных бактерий, представляют собой сложные химические соединения клеточной стенки (ЛПС)- подробнее смотри лекцию по химическому составу бактерий. Токсичность определяется липидом А, токсин относительно термостоек; иммуногенные и токсические свойства выражены более слабо, чем у экзотоксинов.
Наличие капсул у бактерий затрудняет начальные этапы защитных реакций- распознавание и поглощение (фагоцитоз). Существенным фактором инвазивности является подвижность бактерий, обусловливающая проникновение микробов в клетки и в межклеточные пространства.
Факторы патогенности контролируются:
- генами хромосомы;
- генами плазмид;
- генами, привнесенными умеренными фагами.
Лекция № 10. Иммунитет, виды и формы. Структура иммунной системы. Факторы неспецифической защиты.
Первоначально иммунология возникла как наука о невосприимчивости (иммунитете) к инфекционным болезням. Наиболее существенный вклад в ее создание внесли И.И.Мечников (фагоцитарная или клеточная теория иммунитета) и П.Эрлих (гуморальная теория), в творческой дискуссии между которыми совершенствовались представления об иммунитете.
В настоящее время считается, что наследственный (врожденный, видовой) и приобретенный иммунитет зависит от согласованной деятельности пяти основных систем : макрофагов, комплемента, интерферонов, Т- и В- лимфоцитов, главной системы гистосовместимости (МНС- в английском варианте), обеспечивающих различные формы иммунного ответа.
В современном понимании иммунология- это не только наука, изучающая защиту от инфекционных заболеваний. Иммунология- наука, изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержания структурной и функциональной целостности организма (гомеостаза организма). Подробнее - см. лекцию 1.
Центральным
биологическим механизмом
Иммунитет- целостная система биологических механизмов самозащиты организма, с помощью которых он распознает и уничтожает все чужеродное (генетически отличающееся).
Выделяют две основные формы иммунитета- видовой (врожденный) и приобретенный. Приобретенный иммунитет может быть естественный (результат встречи с возбудителем) и искусственный (иммунизация), активный (вырабатываемый) и пассивный (получаемый), стерильный (без наличия возбудителя) и нестерильный (существующий в присутствии возбудителя в организме), гуморальный и клеточный, системный и местный, по направленности- антибактериальный, антивирусный, антитоксический, противоопухолевый, антитрансплантационный.
В основе видового
иммунитета лежат различные механизмы есте
Кожа и слизистые- первая линия защиты против возбудителей. Кроме функции механического (анатомического) барьера кожа обладает бактерицидной активностью. Слизь, лизоцим, желудочный сок, слезная жидкость, слюна, деятельность мерцательного эпителия способствует защите слизистых оболочек.
Нормальная микрофлора организма препятствует колонизации организма посторонней микрофлорой (конкуренция за субстраты, различные формы антагонизма, в т.ч. выделение антибиотических веществ, изменение рН и др.).
Фагоцитоз и система комплемента- вторая линия защиты организма против микроорганизмов, преодолевших поверхностные барьеры. Клеточные факторы системы видовой резистентности- фагоциты, поглощающие и разрушающие патогенные микроорганизмы и другой генетически чужеродный материал. Представлены полиморфоядерными лейкоцитами или гранулоцитами- нейтрофилами, эозинофилами и базофилами (клетками миелопоэтического ряда), а также моноцитами и тканевыми макрофагами (клетками макрофагально- моноцитарной системы).
Значение фагоцитирующих клеток для защиты организма впервые доказал И.И.Мечников, разработавший фагоцитарную теорию иммунитета.
Стадии фагоцитоза.
Процесс фагоцитоза (поглощения твердофазного объекта) состоит из пяти стадий.
1.Активация
(усиление энергетического
2.Хемотаксис.
3.Адгезия.
4.Поглощение.
5.Исход фагоцитоза.
Адгезия связана с наличием ряда рецепторов на поверхности фагоцитов ( к Fc- фрагментам антител, компонентам комплемента, фибронектину), обеспечивающих прочность рецептор- опосредованных взаимодействий опсонинов, обволакивающих микроорганизмы и ограничивающих их подвижность (антитела, С3в, фибронектин).
Фагоциты обладают амебоподобными псевдоподиями. При поглощении образуется фагосома с поглощенным объектом (бактерией), к ней присоединяется и сливается содержащая литические ферменты лизосома, образуется фаголизосома.
Возможно три исхода фагоцитоза:
- завершенный фагоцитоз;
- незавершенный фагоцитоз;
- процессинг антигенов.
Завершенный фагоцитоз- полное переваривание микроорганизмов в клетке- фагоците.
Незавершенный фагоцитоз- выживание и даже размножение микроорганизмов в фагоците. Это характерно для факультативных и особенно - облигатных внутриклеточных паразитов. Механизмы персистирования в фагоцитах связаны с блокадой фагосомо- лизосомального слияния (вирус гриппа, микобактерии, токсоплазмы), резистентностью к действию лизосомальных ферментов (гонококки, стафилококки), способностью микробов быстро покидать фагосомы после поглощения и длительно пребывать в цитоплазме (риккетсии).
В процессе фагоцитоза происходит “окислительный взрыв” с образованием активных форм кислорода, что обеспечивает бактерицидный эффект.
К одной из важнейших функций макрофагов (наряду с хемотаксисом, фагоцитозом, секрецией биологически активных веществ) является переработка (процессинг) антигена и представление его иммунокомпетентным клеткам с участием белков главной системы гистосовместимости (МНС) класса 2.
Фагоцитоз- не только уничтожение чужеродного, но и представление антигена для запуска иммунных реакций и секреции медиаторов иммунных и воспалительных реакций. Система макрофагов- центральное звено не только естественной резистентности (видового иммунитета), но и играет важную роль в приобретенном иммунитете, кооперации клеток в иммунном ответе.
Воспаление как защитная реакция организма на различные повреждения тканей возникло на более высокой ступени эволюции, чем фагоцитоз и характерно для высокоорганизованных организмов, обладающих кровеносной и нервной системами.
Инфекционное воспаление сопровождается различными сосудистыми и клеточными (включая фагоцитоз) реакциями, а также запуском целого ряда медиаторов воспалительных реакций (гистамина, серотонина, кининов, белков острой фазы воспалеия, лейкотриенов и простагландинов, цитокинов, системы комплемента).
Многие бактериальные продукты активируют клетки макрофагально- моноцитарной системы и лимфоциты, отвечающие на них выделением биологически активных продуктов- цитокинов, в частности интерлейкинов. Их можно характеризовать как медиаторы клеточных иммунных реакций. В воспалительных реакциях основную роль имеет интерлейкин-1 (ИЛ-1), стимулирующий лихорадку, повышающий проницаемость сосудов и адгезивные свойства эндотелия, активирующий фагоциты.
Лихорадка. Повышение температуры тела- защитная реакция организма, ухудшающая условия для размножения многих микроорганизмов, активирует макрофаги, ускоряет кровоток и усиливает обменные процессы в организме.
Барьерные функции лимфоузлов. По выражению П.Ф.Здродовского (1969) лимфоузлы- своеобразный биологический фильтр для возбудителей, переносимых с лимфой. Здесь проникшие через кожу или слизистые и занесенные током лимфы микроорганизмы задерживаются и подвергаются действию макрофагов и активированных лимфоцитов.
Система комплемента- комплекс белков и гликопротеидов сыворотки крови человека и позвоночных животных (их более 20). Отдельные компоненты опосредуют процессы воспаления, опсонизацию чужеродных фрагментов для последующего фагоцитоза, участвуют наряду с макрофагами в непосредственном уничтожении микроорганизмов и других чужеродных клеток (лизис бактерий и вирусов). В условиях физиологической нормы компоненты системы комплемента находятся в неактивной форме. Известны три пути активации системы комплемента- классический, альтернативный и с использованием С1- шунта.
Классический путь- каскад протеазных реакций с компонента С1q до С9, реализуется при наличии антител к соответствующему антигену. С комплексом “антиген- антитела” взаимодействует компонент С1q, затем С4, следом- С2. Образуется комплекс “антиген- антитела-С1С4С2”, с ним соединяется С3 (центральный компонент системы) и запускается цепь активации с эффекторными функциями (опсонизация и лизис бактерий, активация системы макрофагов, воспаление).
Альтернативный путь реализуется при первичном контакте с возбудителем (когда еще нет антител). Он индуцируется ЛПС и другими микробными антигенами. С1, С4, С2 не участвуют, альтернативный и классический пути смыкаются на уровне С3.
Система интерферонов.
Интерфероны- синтезируемые различными клетками организма гликопротеиды широкого спектра биологической активности (прежде всего антивирусной), быстрый ответ организма на получение клетками неспецифического сигнала чужеродности. Существует целая система интерферонов, которые разделены на альфа, бета и гамма подтипы с выраженной гетерогенностью свойств. Противовирусное действие проявляется в способности подавлять внутриклеточное размножение ДНК- и РНК- вирусов (прежде всего в результате блокировки синтеза вирусных макромолекул). Индукцию синтеза интерферонов вызывают вирусы, бактерии, риккетсии, простейшие, синтетические соединения.