Автор работы: Пользователь скрыл имя, 03 Декабря 2013 в 15:17, реферат
Радиация - обобщенное понятие. Оно включает различные виды излучений, часть которых встречается природе, другие получаются искусственным путем.
Излучение электромагнитное - процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (например, тормозное излучение, синхротронное излучение, излучение переменных диполя, квадруполя и мультиполей высшего порядков). Атом и другие атомные системы излучают при квантовых переходах из возбужденных состояний в состояния с меньшей энергией.
1. Ионизирующее излучение и его поле 3
2. Виды излучений 7
Корпускулярное излучение 7
Альфа-излучение 7
Протонное излучение 8
Нейтронное излучение 8
Электронное излучение 12
Бета-излучение 12
Космическое излучение 13
Электромагнитное излучение 14
Рентгеновское излучение 17
Гамма излучение 21
Когерентное рассеяние - рассеяние излучения с сохранением частоты и с фазой, отличающейся на π от фазы первичного излучения. Рассеянная волна может интерферировать с падающей волной или другими когерентно рассеянными волнами. Некогерентное рассеяние возникает в результате эффекта Комптона, при котором энергия части рассеиваемых фотонов оказывается меньше энергии квантов первичного пучка. Соответственно, длина рассеиваемой волны в этом случае отличается от длины волны падающего излучения, а их фазы никак не связаны. Рассеянное излучение не интерферирует с когерентно рассеянным и первичным излучениями.
Проникающая способность нейтронов большая. Поскольку нейтроны не имеют электрического заряда, они свободно взаимодействуют с ядрами атомов, вызывая ядерные реакции. Проникающая способность нейтронов зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют. Слой половинного ослабления легких материалов для нейтронного излучения в несколько раз меньше, чем для тяжёлых. И наоборот, тяжёлые материалы, например металлы, хуже ослабляют нейтронное излучение, чем гамма-излучение. Лучшими для защиты от нейтронного излучения являются водородосодержащие материалы, то есть имеющие в своей химической формуле атомы водорода. Обычно применяют воду, парафин, полиэтилен. Кроме того, нейтронное излучение хорошо поглощается бором, бериллием, кадмием, графитом, а также водой и парафином.
Поскольку нейтронные излучения сопровождаются γ-излучениями, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь - вода и т.д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроксидов тяжелых металлов, например, гидроксид железа Fe(OH)3. Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность.
Электронное излучение - пучок электронов на выходе электронного ускорителя или электронной пушки. Характеризуется средней энергией излучения и дисперсией (разбросом), а также шириной пучка. Специальными мерами можно получить моноэнергетический узкий пучок высокоэнергетических электронов.
Бета частицы (β - частицы)- электроны и позитроны, испускаемые ядрами атомов при β – распаде. Бета-излучение - это электроны или позитроны, которые образуются при β-распаде различных элементов от самых легких (нейтрон) до самых тяжелых.
Бета-излучение - самый распространенный тип радиоактивного распада ядер, особенно для искусственных радионуклидов. Β - частицы (как электроны, так и позитроны), взаимодействуют с электронами атомных оболочек и, передавая им часть своей энергии, могут вырывать их с орбит; при этом образуется положительный ион и свободный электрон. При β-распаде электроны движутся со скоростью близкой к скорости света. Так как скорость β- частиц значительно выше скорости α- частиц, они реже взаимодействуют с атомами среды и плотность ионизации на единицу пробега у них в сотни раз ниже, чем у α- частиц, а пробег в воздухе достигает 10 м (у естественных β- излучателей). В мягкой ткани пробег может достигать 10 - 12 мм. Поглощаются они слоем алюминия толщиной 1 мм.
В отличие от электронного излучения, β – излучение сопровождается потоком нейтрино (точнее – антинейтрино для электронов и нейтрино для позитронов). Позитронное излучение сопровождается анигилляционным γ-излучением (с энергией 0,51 и/или 1,02 МэВ).
Космические лучи – поток стабильных частиц высоких энергий (от 1 до 1012 ГэВ), приходящих на Землю из мирового пространства (первичное излучение), а также рожденное этими частицами при взаимодействиях с атомными ядрами атмосферы вторичное излучение, в состав которого входят все известные элементарные частицы.
Первичные космические лучи состоят главным образом из протонов (90%), α-частиц (7%), других атомных ядер, вплоть до самых тяжелых, и небольшого количества электронов, позитронов и фотонов большей энергии. Первичное космическое излучение изотропно в пространстве и неизменно во времени. Подавляющая часть первичных космических лучей приходит на Землю из Галактики и лишь небольшая их часть связана с активностью Солнца.
Космическое излучение - электромагнитное или корпускулярное излучение, имеющее внеземной источник; подразделяют на первичное (которое, в свою очередь, делится на галактическое и солнечное) и вторичное. В узком смысле иногда отождествляют космическое излучение и космические лучи. Космическое излучение - более широкое понятие, чем космические лучи, и включает в себя последнее, а также реликтовое излучение, космическое радиоизлучение и др.
На одном из компонентов космических лучей – нейтрино – построена нейтринная астрономия, связанная с исследованием потоков нейтрино от внеземных источников (Солнца, звезд). Рентгеновское излучение космическое - электромагнитное излучение космических тел в диапазоне энергий фотонов от 100 эВ до 105 эВ, регистрируемое рентгеновскими телескопами. Существуют дискретные источники и диффузный фон космического рентгеновского излучения. К галактическим источникам относятся преимущественно нейтронные звезды и, возможно, черные дыры, шаровые звездные скопления, к внегалактическим источникам - квазары, отдельные галактики и их скопления.
Вариации ионизирующей составляющей космического излучения вызываются и магнитным полем Земли, отклоняющим первичные нарушенные космические ядра. Мощность эффективной дозы, вызванной ионизирующей компонентой космического излучения на открытом воздухе на уровне моря, составляет на экваторе величину порядка 260-270 мкЗв/год, в северных широтах - 270-290 мкЗв/год. По абсолютному значению эффективные дозы, обусловленные нейтронной составляющей космического излучения, в несколько раз ниже ионизирующей составляющей, но более значительно зависят от широты местности и равны в экваториальных широтах 31 мкЗв/год, в полярных - 95 мкЗв/год. С высотой, в пределах колебаний рельефа Земли, на каждые сто метров над уровнем моря, годовая эффективная доза увеличивается на 10 мкЗв за счет уменьшения слоя атмосферы. Начиная с высоты 1,5-2,0 км, этот прирост увеличивается
Излучение электромагнитное - процесс образования свободного электромагнитного поля.
Классическая физика рассматривает
излучение как испускание электромагнитных
волн ускоренно движущимися
Простейшим источником поля является точечный заряд. У покоящегося заряда излучение отсутствует. Равномерно движущийся заряд (в пустоте) также не может быть источником излучения. Заряд же, движущийся ускоренно, излучает. В зависимости от физической природы ускорения излучение иногда приобретает особые наименования. Так, излучение, возникающее при торможении заряженных частиц в веществе в результате воздействия на них кулоновских полей ядер и электронов атомов, называется тормозным излучением. Излучение заряженной частицы, движущейся в магнитном поле, искривляющем её траекторию, называется синхротронным излучением (или магнитотормозным излучением). Оно наблюдается, например, в циклических ускорителях заряженных частиц.
Одним из важнейших примеров излучения релятивистских частиц является синхротронное излучение заряженных частиц в циклических (кольцевых) ускорителях. Резкое отличие от нерелятивистского излучения проявляется здесь уже в спектральном составе излучения.
Ультрарелятивистская частица может излучать электромагнитные волны, даже если она движется прямолинейно и равномерно (но только в веществе, а не в пустоте!). Это излучение названное излучением Черенкова-Вавилова, возникает, если скорость заряженной частицы в среде превосходит фазовую скорость света в этой среде (uфаз=c/n, где n - показатель преломления среды). Излучение появляется из-за того, что частица «перегоняет» порождаемое ею поле, отрывается от него. Атом также может быть источником излучения. Система из ядра и движущегося в его кулоновском поле электрона должна находиться в одном из дискретных состояний (на определённом уровне энергии). При этом все состояния, кроме основного (т. е. имеющего наименьшую энергию), неустойчивы. Атом, находящийся в неустойчивом (возбуждённом) состоянии, даже если он изолирован, переходит в состояние с меньшей энергией. Этот квантовый переход сопровождается испусканием фотона; такое излучение называется спонтанным (самопроизвольным).
Источниками электромагнитного излучения могут быть не только атомы, но и более сложные квантовые системы. Общие методы описания излучения таких систем те же, что и при рассмотрении атомов, но конкретные особенности излучения весьма разнообразны. Излучения молекул, например, имеет более сложные спектры, чем излучения атомов. Для излучения атомных ядер типично, что энергия отдельных квантов обычно велика (γ-кванты), интенсивность же излучения сравнительно низка. Электромагнитное излучение часто возникает и при взаимных превращениях элементарных частиц (аннигиляции электронов и позитронов, распаде мезона и т.д.).
Если частота внешнего излучения, падающего на уже возбуждённый атом, совпадает с одной из частот возможных для этого атома согласно (2) квантовых переходов, то атом испускает квант излучения, в точности такой же, как и налетевший на него (резонансный) фотон. Это излучение называется вынужденным. По своим свойствам оно резко отличается от спонтанного - не только частота, но и направление распространения, и поляризация испущенного фотона оказываются теми же, что у резонансного. Электромагнитное излучение имеет широкий спектр энергий и различные источники: гамма-излучение атомных ядер и тормозное излучение ускоренных электронов, радиоволны и др.
Фотон - элементарная частица энергии, обладающая как свойствами частицы, так и волны: фотон не имеет заряда и массы, но обладает импульсом. Энергия света, рентгеновских лучей, гамма - лучей и т.д. переносится фотонами.
Фотонное излучение - фотонное излучение, возникающее при изменении энергетического состояния атомных ядер или при аннигиляции частиц.
К фотонному ионизирующему
излучению относятся γ-
Рентгеновские лучи - электромагнитное ионизирующее излучение, занимающее спектральную область между гамма- и ультрафиолетовым излучением в пределах длин волн 10-3 – 100 нм (от 10-12 до 10-5 см).
Энергетический диапазон от 100 эВ до 0,1 МэВ. Рентгеновские лучи с длиной волны l <0,2 нм условно называются жёсткими, с l >0,2 нм - мягкими рентгеновскими лучами.
Рентгеновские лучи используются в медицине для исследований, диагностики и лечения определенных органических нарушений органов тела, в особенности - внутренних органов.
Открыты в 1895 году В.К. Рентгеном и названы им Х-лучами (этот термин применяется практически во всех странах, кроме Германии и России). В зависимости от механизма возникновения рентгеновских лучей их спектры могут быть:
Линейчатое излучение возникает после ионизации атома с выбрасыванием электрона одной из его внутренних оболочек. Такая ионизация может быть результатом столкновения атома с быстрой частицей, например электроном (первичные рентгеновские лучи), или поглощения атомом фотона (флуоресцентные рентгеновские). Ионизованный атом оказывается в начальном квантовом состоянии на одном из высоких уровней энергии и через 10-16-10-15 сек переходит в конечное состояние с меньшей энергией. При этом избыток энергии атом может испустить в виде фотона определённой частоты. Частоты линий спектра такого излучения характерны для атомов каждого элемента, поэтому линейчатый рентгеновский спектр называется характеристическим.
Характеристическое рентгеновское излучение – электромагнитное излучение, испускаемое при переходах электронов с внешних электронных оболочек атома на внутренние (характеристический спектр). Характеристический спектр – линейчатый рентгеновский спектр, возникающий при переходах электронов верхних оболочек атома на более близко расположенные к ядру K-, L-, M-, N – оболочки. Частоты линий характеристического спектра химических элементов подчиняется закону Мозли.
Интенсивность тормозных
рентгеновских лучей
Традиционный метод генерации рентгеновских лучей - бомбардировка металлического электрода в вакуумной трубке пучком ускоренных электродов. Рентгеновское излучение обладает большой проникающей способностью, действует на фотографическую эмульсию, вызывает люминесценцию, активно действует на клетки живого организма, ионизирует газы, взаимодействует с ионами кристаллической решётки, обладает корпускулярными свойствами, невидимо.