Репарация ДНК

Дата поступления: 25 Ноября 2012 в 08:00
Автор работы: k********@mail.ru
Тип: реферат
Скачать полностью (616.39 Кб)
Прикрепленные файлы: 1 файл
Скачать документ  Просмотреть файл 

РЕПАРАЦИЯ отредактировать.docx

  —  622.20 Кб

Пострепликативная репарация осуществляется в тех случаях, когда повреждение доживает до фазы репликации (слишком много повреждений, или повреждение возникло непосредственно перед репликацией) или имеет такую природу, которая делает невозможным его исправление с помощью эксцизионной репарации (например, сшивка цепей ДНК). Важная характеристика пострепликативной системы репарации - точность синтеза ДН К, не уступающая той, что наблюдается при обычной репликации.

Эта система играет особенно важную роль у эукариот, обеспечивая возможность копирования даже с поврежденной матрицы (хотя и с увеличенным количеством ошибок). Одна из разновидностей этого типа репарации ДНК- рекомбинационная репарация.

Данный вариант пострепликативной репарации использует рекомбинацию для получения неповрежденной копии генетического материала. Этот тип репарации ДНК был открыт в клетках мутантов E. coli, неспособных выoеплять тиминовые димеры.

После действия ультрафиолета  в таких клетках с помощью ДНК-полимеразы III синтезируется ДНК с одноцепочечными пробелами -брешами, которые исчезают при последующей инкубации клеток в питательной среде за счет рекомбинации между двумя сестринскими дуплексами. У Е. coli эти обмены осуществляются с помощью продуктов генов rec (А, В и С). Кроме них, в заключительном этапе ресинтеза и сшивания участвуют ДНК-полимераза I илигаза.

Механизм пострепликативной репарации ДНК, происходящей уже в первые минуты после облучения, наименее специфичен, гак как отсутствует этап узнавания повреждения. Это быстрый способ восстановления нативной структуры, по крайней мере, части дочерних молекул ДНК. Таким образом, данная система позволяет полностью пройти процессу репликации на матрице поврежденной ДНК, но не удаляет повреждения: оно остается в исходных родительских цепях и может быть удалено на других этапах клеточного цикла, например, с помощью эксцизионной репарации.

    1. SOS репарация ДНК. Характеристика и механизмы SOS репарации ДНК.

Существуют системы генетической репарации, при которых точность синтеза невысока. Они являются индуцибельными, и, очевидно, обусловлены необходимостью синтеза ДНК даже на матрице, содержащей повреждения. При этом синтез ДНК на матрице, оставшейся неповрежденной, будет сопровождаться большим количеством ошибок. Индукцию процессов репарации, сопровождающуюся увеличением числа ошибок последней, обнаружил в 1953 г. Дж. Уэйгл (при заражении УФ-облучснных клеток Е. coli облученным же фагом X).

В честь первооткрывателя этот тип генетической репарации в 1974 г. М. Радман назвал W-реактивацией (Weigle-reactivalion). W-реактивация дает возможность многим димерам пиримидина, возникающим в бактериальной клетке, дожить до периода синтеза ДНК. Хотя такая ДНК и содержит значительное количество ошибок, поврежденные клетки действительно «спасаются» на каком-то этапе, если только жизненно важные функции не оказались безнадежно нарушенными. Тогда же было показано, что реализация этого механизма возможна только при наличии продуктов генов гесА и lexA.

М. Радман в 1974 г. и Э. Виткин в 1975 г. сформулировали представления об индуцибельной системе генетической репарации, включающейся при появлении затруднений в синтезе ДНК, возникших вследствие сохранившихся димеров, число которых ДОЛЖНО быть не менее 30-60. В связи со спасательными функциями этой системы репарации ДНК она была названа SOS-репарацией.

Таким образом, важная особенность  прокариотических и эукариотических клеток состоит в их способности увеличиватьэффективность генетической репарации при высокой дозе повреждений. Это возможно в результате индукции новой или модификации одной из пресушествующихДНК-полимераз за счет белковых продуктов генов, активируемых повреждающими агентами. Например, появление таких ферментов в случае УФ-облучения обеспечивает транедимерный синтез ДНК, в результате которого напротив тиминовогодимера будет находиться не брешь, а какой-либо нуклеотид. Разумеется, такая произвольная подстановка нуклеотида во вновь образующуюся цепь ДНК часто приводит к ошибкам репликации.

В клетках Е. coli сигналом для индукции SOS-репарации служит замедление синтеза ДНК. Ответом на этот сигнал является ингибирование клеточного деления, индукция эксцизионной репарации с длинными вырезаемыми фрагментами и затем — рекомбинационной репарации.

По-видимому, непосредственным стимулом к запуску механизмов SOS-репарации служит накопление одноцепочечных разрывов ДНК, индуцирующее протеазную активность белка RecA который специфически взаимодействует с белком LexA -репрессором для генов rec (В, С, Е, F,J) и uvr B. Разрезание белка LexA приводит к снятию репрессии и запуску синтеза белковых продуктов указанных выше генов. Кроме того, разрезание белка LexA приводит к кратковременному увеличению его синтеза в клетке, поскольку данный белок является репрессором собственного гена (аутогенный контроль). Далее в результате работы репарационных систем происходит уменьшение количества одноцепочечных разрывов в ДНК, тем самым снижается индуцирующий SOS-репарацию сигнал, белок RecA теряет протеазную активность, и механизмы SOS-репарации выключаются.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Значение репарации ДНК.

Устранение  ошибок репликации важно, так как  большая часть повреждений блокирует  передачу генетической информации последующему поколению, а остальные если их не устранить, сохраняться в геноме потомков и приведут к драматическим изменениям в молекулах белков, ферментов, необходимых для поддержания жизнедеятельности клетки. При повреждении определенных звеньев системы репарации клетки становятся особенно уязвимыми для некоторых химических и физических агентов. Люди, страдающие, например, пигментной ксеродермой, очень чувствительны к УФ-свету, и у них развиваются разные формы рака кожи даже при очень слабом воздействии солнечного света. Клетки таких людей несут мутацию в RAD-генах, проявляющуюся в том, что у них нарушена способность к выщеплению пиримидиновых димеров из УФ-облученной ДНК. Заболевание может быть обусловлено мутацией в одном из по крайней мере девяти генов, что говорит о достаточно сложном механизме репарации ДНК, содержащей тиминовые димеры, у человека.как правило, заболевание бывает связано с неспособностью к выщеплению тиминовых димеров. Если к облученным клеткам в культуре добавить фермент, обладающий тиминдимергликозилазной и АР-эндонуклеазной активностями, то УФ-повреждения могут быть устранены.

Обобщая значение репарационных механизмов в жизни клеток, можно заключить, что репарация повреждений ДНК  обеспечивает поддержание стабильности генов, причем она основана на наличии  двух цепей в ДНК. Именно благодаря  этому повреждения в одной  цепи могут репарироваться за счет информации неповрежденной цепи. Однако ДНК, вопреки тому, что она является хранителем генетической информации, все же обладает ограниченной химической стабильностью. В клетках с довольно высокой частотой встречается гидролиз, окисление и неэнзиматическое метилирование ДНК. Эти реакции взаимодействуют с восстановлением ДНК. Предполагают, что спонтанный распад ДНК, вероятно, является главным фактором в спонтанном мутагенезе, карциногенезе и наступлении старения организмов. Таким образом, ДНК представляется противоречивой структурой. С одной стороны, она очень консервативна в плане ее стабильности, с другой стороны, она очень подвержена распаду.

 

 

 


Страницы:← предыдущая12
Краткое описание
Репарация ДНК и виды репарации ДНК.
Если в ДНК появляются одно- и двунитевые разрывы, то в действие вступает гомологичная рекомбинация , которая за счет сестринских обменов точно восстанавливает целостность ДНК. Однако рекомбинация - это "тяжелая артиллерия", и предназначена она более всего для изменчивости. При поступлении в клетку ДНК, которая лишь частично гомологична ДНК клетки, вероятна ее интеграция в геном с помощью гомологичной рекомбинации. На страже точности этого процесса стоит система коррекции неспаренных оснований с длинным ресентезируемым участком (ДКНО), которая прерывает рекомбинацию, если гомология взаимодействующих молекул ДНК излишне несовершенна. Более того, ДКНО ликвидирует большинство рекомбинационных застроек на уровне онДНК, если они нарушают комплементарность спаривания нуклеотидов. Тем самым ДКНО снижает частоту рекомбинационных обменов в ДНК. Так система ДКНО отстаивает стабильность генома и его видоспецифичность. Наследственные нарушения клеточных репаративных систем у человека приводят к тяжелым врожденным аномалиям и/или предрасположенности к развитию раковых заболеваний.
Содержание
содержание отсутствует