Кремний, его свойства и аллотропные изменения. Кремний – биогенный элемент

Автор работы: Пользователь скрыл имя, 10 Декабря 2013 в 11:45, реферат

Краткое описание

Цель: изучить свойства кремния и природных его соединений, совершенствовать знания о строении атомов
Задачи:
Определить строении кремния, значении кремния и его соединений и их практическом применении.
Выделить значение кремния как биогенного элемента.
Определить основные области силикатной промышленности.

Содержание

Введение
История открытия кремния
Кремний в природе и его промышленная добыча
Кремний, его свойства и аллотропные видоизменения
Способы получения кремния
Соединения кремния и их свойства
Силикатная промышленность
Заключение
Литература

Прикрепленные файлы: 1 файл

Реферат по Химии на тему- «Кремний, его свойства и аллотропные и.doc

— 155.50 Кб (Скачать документ)

Электрофизические свойства

Элементарный кремний  в монокристаллической форме  является непрямозоннымполупроводником. Ширина запрещенной зоны при комнатной

 

                                                               8

температуре составляет 1,12 эВ, а при  Т = 0 К составляет 1,21 эВ[5]. Концентрация собственных носителей заряда в кремнии при нормальных условиях составляет порядка 1,5×1010см−3[источник не указан 342 дня].

На электрофизические свойства кристаллического кремния большое  влияние оказывают содержащиеся в нем примеси. Для получения кристаллов кремния с дырочной проводимостью в кремний вводят атомы элементов III-й группы, таких как бор, алюминий, галлий, индий). Для получения кристаллов кремния с электронной проводимостью в кремний вводят атомы элементов V-й группы, таких как фосфор, мышьяк, сурьма.

При создании электронных приборов на основе кремния задействуется  преимущественно приповерхностный слой материала (до десятков микрон), поэтому качество поверхности кристалла может оказывать существенное влияние на электрофизические свойства кремния и, соответственно свойства готового прибора. При создании некоторых приборов используются приёмы связанные с модификацией поверхности, например, обрабатывая поверхность кремния различными химическими агентами.

  1. Диэлектрическая проницаемость: 12[1]
  2. Подвижность электронов: 1300—1450 см²/(в·c).
  3. Подвижность дырок: 500 см²/(в·c).
  4. Ширина запрещенной зоны 1,205-2,84×10-4·T
  5. Продолжительность жизни электрона: 5 нс — 10 мс
  6. Длина свободного пробега электрона: порядка 0,1 см
  7. Длина свободного пробега дырки: порядка 0,02 — 0,06 см

 

                                                  Способы получения кремния

Свободный кремний может  быть получен прокаливанием с  магнием мелкого белого песка, который  по химическому составу является почти чистым окислом кремния,

  • SiO2+2Mg=2MgO+Si ,

образующийся при этом аморфный кремний имеет вид бурого порошка, плотность которого равна 2,0 г/см³ [3]

В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2коксом при температуре около 1800 °C в дуговых печах. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).

Возможна дальнейшая очистка кремния от примесей.

  • Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.
  • Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4 и SiCl3H. Эти хлориды различными способами очищают от примесей (как правило перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.
  • Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.

Содержание примесей в доочищенном кремнии может  быть снижено до 10−8—10−6% по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний

Способ получения кремния  в чистом виде разработан Николаем Николаевичем Бекетовым.

Крупнейшим производителем кремния в России является ОКРусал[1] — кремний производится на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область).

 

                                                          10        

 

                      Соединения кремния и их свойства                                                                 

Соединения  кремния

Карбид кремния (SiC) • Силаны (SinH2n+2) • Кремнефтористоводородная кислота (H2[SiF6]) • Кремниевые кислоты (SiO2·nH2О) • Оксид кремния(II) (SiO) • Оксид кремния(IV) (SiO2) • Полевые шпаты • Силикагель (nSiO2·mH2O) • Силиконовое масло • Силиконы ([R2SiO]n) • Силицид ванадия (V3Si) • Силицид рения (ReSi) • Силицид молибдена (MoSi2) • Силикат сурьмы (Si3Sb4) • Силицид висмута (Si3Bi4) • Силицид полония (SiPo2) • Силицид кальция (CaSi2) • Силицид марганца (Mg2Si) • Трихлорсилан (SiHCl3) • Хлорид кремния(IV) (SiCl4) • Хлориды кремния • Нитрид кремния (Si3N4) • Тетраиодид кремния (SiI4) • Тетрабромид кремния (SiBr4) • Сульфид кремния (SiS2) • Муассанит

По химическим свойствам  кремний является неметаллом. Поскольку  на внешнем энергетическом уровне находится 4 электрона, то для кремния характерна степень окисления как -4, так и +4. Химически кремний мало активен .При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния :

Si + 2F2 = SiF4

При нагревании измельченный кремний реагирует с кислородом с образованием оксида кремния (IV):

Si + O2 = SiO2

Кислоты (кроме смеси  фтороводородной и азотной) на кремний не действуют. Однако он растворяется в щелочах, образуя силикат и водород.

Si + 2 NaOH + H2O = Na2SiO3 + 2H2

В соединениях кремний  склонен проявлять степень окисления +4 или −4, так как для атома кремния более характерно состояние sp3-гибридизации орбиталей. Поэтому во всех соединениях, кроме оксида кремния (II) SiO, кремний четырёхвалентен.

Химически кремний малоактивен. При комнатной температуре реагирует  только с газообразным фтором, при этом образуется летучийтетрафторид кремния SiF4. При нагревании до температуры 400—500 °C кремний реагирует с кислородом с образованием диоксида SiO2, с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHalogen4.

С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:

Ca2Si + 4HCl → 2CaCl2 + SiH4↑.

                                                            11

Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).

С азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12. Соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремнияSiC (карборунд) характеризуется высокой твердостью и низкой химической активностью. Карборунд широко используется как абразивный материал.

При нагревании кремния  с металлами возникают силициды. Силициды можно подразделить на две  группы: ионно-ковалентные (силициды щелочных,                                                                                                                        щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.

При восстановлении SiO2 кремнием при высоких температурах образуется оксид кремния (II)SiO.

Для кремния характерно образование кремнийорганических  соединений, в которых атомы кремния  соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.

Для травления кремния  наиболее широко используют смесь плавиковой и азотной кислот. Некоторые специальные травители предусматривают добавку хромового ангидрида и иных веществ. При травлении кислотный травильный раствор быстро разогревается до температуры кипения, при этом скорость травления многократно возрастает.

  1. Si+2HNO3=SiO2+NO+NO2+H2O
  2. SiO2+4HF=SiF4+2H2O
  3. 3SiF4+3H2O=2H2SiF6+↓H2SiO3

Для травления кремния могут использоваться водные растворы щелочей. Травление кремния в щелочных растворах начинается при температуре раствора более 60°С.

  1. Si+2KOH+H2O=K2SiO3+2H2
  2. K2SiO3+2H2O↔H2SiO3+2KOH

представляет материал о наиболее стойком природном  соединении кремния - оксиде кремния (IV). Это кремнезем, кварц, прозрачные кристаллы  кварца – горный хрусталь, мелкокристаллическая разновидность кварца – яшма, мелкие зерна кварца – песок (все образцы представлены на выставке и демонстрируются). Чрезвычайно распространены в природе также силикаты.

                                                       

 

Например:

Каолинит является главной составной частью белой глины.

Из искусственных силикатов  наибольшее значение имеют керамика, стекло и цемент. Познакомимся с  производством некоторых из материалов, выпускаемых силикатной промышленностью, подробнее.

 

             

Силикатная промышленность                                                                           

Гжель – один из традиционных российских центров производства керамики. Это обширный район, состоящий из 27 деревень, объединенных в “Гжельский куст” , расположенный примерно в 60 километрах от Москвы по железнодорожной линии Москва – Муром – Казань .Сейчас это Раменский район Московской области (показывается на карте Московской области).

Издавна Гжель славилась  своими глинами. Великий русский  ученый М.В.Ломоносов , по достоинству оценивший гжельские глины, написал о них столь возвышенные слова: “Едва ли есть земля самая чистая и без примешения где на свете, кою химики у нас называют гжельскую, которой нигде не видал я белизноюпревосходнее”.До середины XVIII века Гжель делала обычную для того времени гончарную посуду, изготавливала кирпич, гончарные трубы , а также примитивные детские игрушки.

Вторая половина XVIII века – полуфаянс, полученный как промежуточный  материал в поисках рецепта фарфора, расписанный синей смальтой по серому, толстому, пористому черепку. Роспись на квасниках, кувшинах, тарелках носила графический характер и имела вид раскрашенного контурного рисунка.

Начало XIX века – эпоха  фарфора. Фарфор частных заводов  Гжели отличался большой яркостью, сочетанием контрастных красок разнообразных форм бытовых предметов.

В 1972 году был создан современный  Гжельский стиль продукции с  использованием синей кобальтовой  краски.

Стройная художественная система приемов гжельского письма закреплялась в индивидуальных почерках, своеобразных манерах исполнителей. Используя в творчестве один и тот же набор живописных элементов, каждый художник создавал свой индивидуальный сюжет росписи: букет или отдельный цветок, животный или растительный мир, изображения людей.

Важная особенность в гжельской росписи сине – белого фарфора – живописное начало. Большое значение придается движению кисти, способной создавать множество тончайших градаций синего цвета: от звучного насыщенного до размытого голубого. В сочетании с белым фоном рисунок создает ажурный узор на поверхности изделия: в центре – яркое, крупное пятно – изображение цветка, а вокруг легкая россыпь веточек с листьями и ягодками, завитков, усиков.

Фарфоровые изделия  живописец расписывает оксидом  кобальта (II).

Сейчас невозможно точно сказать, кто и когда изобрел стекло. Известно лишь, что стекло является одним из древнейших изобретений человечества. Так, ожерелье, найденное на шее мумии египетской царицы Хатшепсут, состоящее из зеленовато – черных стеклянных бусин, насчитывает 3400 лет. Большими мастерами производства различных изделий из стекла были римские стеклоделы. Они делали кувшины для воды , масла и вина, чаши и кубки, вазы, слезницы – крошечные флакончики для духов. Большой вклад в развитие художественного стеклоделия в России был внесен Ломоносовым. В созданной им в 1748

                                                            17

Информация о работе Кремний, его свойства и аллотропные изменения. Кремний – биогенный элемент