Введение генов в клетки растений. Достижения генной инженерии. Проблемы биобезопасности трансгенных растений

Автор работы: Пользователь скрыл имя, 25 Марта 2015 в 20:40, реферат

Краткое описание

Для двудольных растений существует естественный вектор для горизонтального переноса генов: плазмиды агробактерий. Что касается однодольных, то, хотя в последние годы достигнуты определенные успехи в их трансформации агробактериальными векторами, все же подобный путь трансформации встречает существенные затруднения.
Для трансформации устойчивых ("рекальцитрантных") к агробактериям растений разработаны приемы прямого физического переноса ДНК в клетку, многие из которых взяты из практики работы с клетками бактерий или животных. Эти методы достаточно разнообразны, они включают: бомбардировку микрочастицами или баллистический метод; электропорацию; обработку полиэтиленгликолем; перенос ДНК в составе липосом.

Содержание

Введение генов в клетки растений...................................................................2
Достижения генной инженерии.......................................................................12
Улучшение качества запасных белков..........................................................13
Создание гербицидоустойчивых растений...................................................15
Повышение устойчивости растений к стрессовым условиям..................17
Повышение эффективности биологической азотфиксации......................18
Получение растений с новыми свойствами..................................................19
Проблемы биобезопасности трансгенных растений...................................20
Список литературы.............................................................

Прикрепленные файлы: 1 файл

Введение генов в клетки растений. Зорков, Чудаев.docx

— 538.68 Кб (Скачать документ)

Проблема возможного ущерба для окружающей среды имеет несколько аспектов. Во-первых, существует опасение, что устойчивые к гербицидам культурные растения могут при межвидовом опылении передавать эти гены близкородственным сорнякам, которые могут превратиться в неистребимые суперсорняки (superweeds). Хотя вероятность такого нежелательного развития событий для большинства сельскохозяйственных культур очень мала, генные инженеры активно разрабатывают подходы для исключения подобной опасности. Здесь, правда, надо отметить, что данный вопрос также не новый, так как в практике сельского хозяйства уже давно используется ряд устойчивых к гербицидам сортов, полученных путем обычной селекции. При этом никакой экологической катастрофы широкое использование таких устойчивых сортов до сих пор не вызвало.

Тем не менее и в этом случае, чтобы отвести любые возражения от трансгенных растений, пробуют, например, вводить в растения не один, а сразу несколько генов устойчивости к разным гербицидам. Передача нескольких генов сорнякам гораздо менее вероятна, чем одного гена. Кроме того, мультигербицидная устойчивость позволит чередовать разные гербициды при обработке посевов, что не даст возможности для распространения какого-либо определенного гена устойчивости в сорняках.

Предлагается также вводить гены устойчивости не в ядерный, а в хлоропластный геном. Это может предотвратить нежелательный дрейф генов с помощью пыльцы, так как хлоропласты наследуются только по материнской линии.

Еще один генно-инженерный путь борьбы с сорняками без использования генов резистентности к гербицидам вообще – биотрансгенный. Речь идет об использовании мелких животных, например, кроликов, для поедания сорняков на полях. При этом, чтобы оградить от поедания культурные растения, в них можно ввести какой-либо ген, делающий их непривлекательными (запах, вкус) для данного животного. Такой биотрансгенный подход сразу снял бы большинство выдвигаемых сейчас возражений против трансгенных культур.

Близкие по сути экологические возражения касаются трансгенных растений со встроенными "инсектицидными" генами, способных, как считают, спровоцировать у насекомых-вредителей возникновение массовой резистентности. Здесь также предложены действенные способы для уменьшения этой опасности, например, использование генов нескольких разных токсинов и/или индуцибельных промоторов, быстро активирующихся при нападении насекомых на растение. Данная проблема в общем не нова, так как многие из инсектицидов, используемых сейчас на "генном уровне", давно применяют в виде чистого вещества для опрыскивания посевов.

Еще одно нежелательное следствие использования трансгенных растений с генами инсектицидов заключается в том, что пыльца этих растений может быть токсичной и для полезных насекомых, которые данной пыльцой питаются. Некоторые экспериментальные данные говорят о том, что такая опасность действительно существует, хотя о ее возможных масштабах говорить пока трудно. Однако и здесь уже предложены и испытаны адекватные генно-инженерные решения, например, использование трансгеноза через хлоропластную ДНК, или промоторов, не работающих в пыльце.

 

 

 

 

 

 

 

 

Список литературы

 

  1. http://www.biotechnolog.ru/ge/ge9_4.htm
  1. http://chem21.info/info/1375809/

  1. Лутова Л. А., Проворов Н. А., Тиходеев О. Н. и др. Генетика развития растений. - СПб.: Наука, 2000. - 539с.

  1. Романов Г. А. Генетическая инженерия растений и пути решения проблемы биобезопасности. Физиология растений, 2000. - Том 47. - № 3.

start="5"

 Саляев Р. Мифы и реальности генной инженерии // Наука в Сибири. – 2002.

  1. http://www.znaytovar.ru/s/Texnologii_sozdaniya_gmrasteni.html

  1. Атанасов А. Биотехнология в растениеводстве. Новосибирск: ИЦиГСО РАН, 1993. – 241 с.

  1. Ли А., Тинланд Б. Интеграция т-ДНК в геном растений: прототип и реальность. Физиология растений. 2000, том 47, № 3. С. 354-359

 

 

 

 

 

 


Информация о работе Введение генов в клетки растений. Достижения генной инженерии. Проблемы биобезопасности трансгенных растений