Космологические теории

Автор работы: Пользователь скрыл имя, 18 Мая 2014 в 11:43, реферат

Краткое описание

Целью данной работы будет являтся рассмотрение перехода от одной космологической модели к другой, разъяснение и объяснение каждой из них

Прикрепленные файлы: 1 файл

реферат по ксе .doc

— 80.50 Кб (Скачать документ)

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

 

«Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации»

 

«Международный институт государственной службы и управления»

 

 

 

 

 

 

РЕФЕРАТ

по дисциплине «Концепции современного естествознания»

 

на тему:

«Космологические теории»

 

   

Выполнил:

Студентка 1 курса очной формы обучения, направления 081100.62 «Государственное и муниципальное управление», групы ОБ12-1

Братанова В.А.

 

Проверил:

 

Профессор кафедры управления природопользования и охраны окружающей среды, профессор кафедры управления социальными и экологическими системами, старший научный сотрудник

Д.Ф.Н., К.Т.Н. Кричевский С.В.

 


 

 

 

 

 

 

 

 

 

 

Москва 2013 год

 

Оглавление

Список литературы: 23 

Введение

Космология — астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной.1 Является синтезом таких наук, как математика, физика, астрономия философи и др. Сам термин «космология» образован от двух греческих слов: kosmos — Вселенная и logos — закон, учение.

 Современная космология — это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой — в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а в конечном счете и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории — подтверждаться наблюдениями или во всяком случае не противоречить им.

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально. Поэтому космология оперирует моделями.

Целью данной работы будет являтся рассмотрение перехода от одной  космологической модели к другой, разъяснение и объяснение каждой из них.

1. Классическая модель космологии

Уже древние мудрецы задавались вопросом о происхождении и устройстве Вселенной. Их взгляды и идеи были неотъемлемым компонентом философских систем древности. Эти первые космологические идеи, сохранившиеся до наших дней в виде мифов, основывались на астрономических наблюдениях.

Жрецам Вавилона, Египта, Индии и Китая удалось точно вычислить продолжительность года, повторяемость солнечных и лунных затмений. Наблюдая за небесными телами, они смогли выявить две группы небесных тел: подвижные и неподвижные. Множество звезд долгое время считались неподвижными объектами. К числу подвижных тел относились Луна, Солнце и пять известных в то время планет, названных именами богов (впервые это было сделано в Вавилоне, сегодня же мы используем в качестве названий планет имена римских богов) — Меркурий, Венера, Марс, Юпитер и Сатурн. В их честь неделя была разделена на семь дней, каждый из которых в существующей и сегодня астрологической традиции связан с одним из подвижных тел. Из наблюдения видимого движения Солнца по небесной сфере были открыты двенадцать так называемых зодиакальных созвездий.

 В античности появилось несколько интересных космологических моделей Вселенной, принадлежащих Пифагору, Демокриту, Платону. Тогда же возникли и первые гелиоцентрические модели Вселенной. Так, Гераклид Понтийский признавал суточное вращение Земли и ее движение вокруг покоящегося Солнца. Аристарх Самосский выдвигал идею о том, что Земля вращается по окружности, центром которой служит Солнце. Но гелиоцентрические идеи были отвергнуты большинством античных мыслителей, и общепризнанным итогом античной космологии стала геоцентрическая концепция, сформулированная Аристотелем и усовершенствованная Птолемеем. Данная модель просуществовала в течение всего Средневековья. Она была очень сложной, так как для компенсации видимого движения планет, совершающих петлеобразные движения, пришлось ввести систему деферентов (траектория движения центра планеты по кругу, отличному от эпицикла) и эпициклов (траектория движения планеты по кругу).

С приходом Нового времени философия уступила свое первенство в создании космологических моделей науке, которая добилась особенно больших успехов в XX в., перейдя от различных догадок к достаточно обоснованным фактам, гипотезам и теориям. Первым результатом стало появление в XVI в. гелиоцентрической модели Вселенной, автором которой стал Николай Коперник. В этой модели Вселенная все еще представляла собой замкнутую сферу, в центре которой находилось Солнце, а вокруг него вращались планеты, в том числе и Земля.

Успехи космологии и космогонии в XVIII—XIX вв. завершились созданиемклассической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Данная модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Исчезни вдруг все тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде классическая полицентрическая модель просуществовала в науке вплоть до начала XX в.

Однако в данной модели Вселенной было несколько недостатков. Закон всемирного тяготения объяснял центростремительное ускорение планет, но не говорил, откуда взялось стремление планет, а также любых материальных тел двигаться равномерно и прямолинейно. Для объяснения инерциального движения пришлось допустить существование в ней божественного «первотолчка», приведшего в движение все материальные тела. Кроме того, для коррекции орбит космических тел также допускалось вмешательство Бога. Таким образом, классическая полицентрическая модель Вселенной лишь частично носила научный характер, она не смогла дать научного объяснения происхождения Вселенной и поэтому была заменена другими моделями.

 

2. Космологические парадоксы

К концу XIX в. появились серьезные сомнения в классической космологической модели. Они приняли форму так называемых космологических парадоксов — фотометрического, гравитационного и термодинамического.

  • 2.1 Фотометрический парадокс 

Еще в XVIII в. швейцарский астроном Р. Шезо высказал сомнения в пространственной бесконечности Вселенной. Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит. Независимо от Шезо к аналогичным же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо—Ольберса. Таков был первый космологический парадокс, поставивший под сомнение пространственную бесконечность Вселенной.

  • 2.2 Гравитационный парадокс 

В конце XIX в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также неизбежно вытекавший из представлений о бесконечности Вселенной. Он получил названиегравитационного парадокса. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная не бесконечна.

  • 2.3 Термодинамический парадокс

Третий, термодинамический, парадокс также был сформулирован в XIX в. Мир полон энергии, которая подчиняется важнейшему закону природы — закону сохранения энергии. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал, как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в то время почти всеобщим.

Тем неожиданнее прозвучал вывод из второго начала термодинамики, открытого в середине XIX   в. англичанином Кельвином и немецким физиком Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит тепловая смерть Вселенной.

Встать на позицию Клаузиуса — значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно, а в будущем, если не случится какого-нибудь чуда, Вселенную ждет тепловая смерть.

Таким образом, концепция тепловой смерти Вселенной, термодинамический парадокс подставили под сомнение вопрос о вечности Вселенной во времени.

Три космологических парадокса заставили ученых усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

 

3. Релятивийская модель Вселенной

 

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила релятивистская теория тяготения — общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели, пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. На основании проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

При этом не следует представлять себе данную модель Вселенной в виде обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность — это разные понятия.

Итак, из расчетов Эйнштейна следовало, что наш мир является четырехмерной сферой. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе можно облететь всю замкнутую Вселенную, двигаясь все время в одном направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная Эйнштейна содержит хотя и большое, но все же конечное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира. Его более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый.

Информация о работе Космологические теории